Introduction: Alpha1-antitrypsin deficiency is a predisposing factor for pulmonary disease and under-diagnosis is a significant problem. The results of a targeted screening in patients with respiratory symptoms possibly indicative of severe deficiency are reported here.
Methods: Data were collected from March 2016 to October 2017 on patients who had a capillary blood sample collected during a consultation with a pulmonologist and sent to the laboratory for processing to determine alpha1-antitrypsin concentration, phenotype and possibly genotype.
Results: In 20 months, 3728 test kits were requested by 566 pulmonologists and 718 (19 %) specimens sent: among these, 708 were analyzable and 613 were accompanied by clinical information. Of the 708 samples, 70 % had no phenotype associated with quantitative alpha1- antitrypsin deficiency, 7 % had a phenotype associated with a severe deficiency and 23 % had a phenotype associated with an intermediate deficiency. One hundred and eight patients carried at least one PI*Z allele which is considered to be a risk factor for liver disease.
Conclusions: The results of this targeted screening program for alpha1- antitrypsin deficiency using a dried capillary blood sample reflect improvement in early diagnosis of this deficiency in lung disease with good adherence of the pulmonologists to this awareness campaign.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rmr.2020.08.001 | DOI Listing |
PLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFCell Rep
January 2025
Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.
View Article and Find Full Text PDFJ Clin Immunol
January 2025
Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, 19104, USA.
Major histocompatibility complex class I deficiency results from deleterious biallelic variants in TAP1, TAP2, TAPBP, and B2M genes. Only a few patients with variant-curated TAP1 deficiency (TAP1D) have been reported in the literature and the clinical phenotype has been variable with an emphasis on autoimmune and inflammatory complications. We report TAP1D in a Nepalese girl with a severe clinical phenotype with serious viral infections at a very young age.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
The tumor immune microenvironment (TiME) of human central nervous system (CNS) tumors remains to be comprehensively deciphered. Here, we employed flow cytometry and RNA sequencing analysis for a deep data-driven dissection of a diverse TiME and to uncover noncanonical immune cell types in human CNS tumors by using seven tumors from five patients. Myeloid subsets comprised classical microglia, monocyte-derived macrophages, neutrophils, and two noncanonical myeloid subsets: CD3 myeloids and CD19 myeloids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!