This study introduces a noninvasive wearable system for investigating tendon loading patterns during outdoor locomotion on variable terrain. The system leverages shear wave tensiometry, which is a new approach for assessing tendon load by tracking wave speed within the tissue. Our wearable tensiometry system uses a battery-operated piezoelectric actuator to induce micron-scale shear waves in a tendon. A data logger monitors wave propagation by recording from two miniature accelerometers mounted on the skin above the tendon. Wave speed is determined from the wave travel time between accelerometers. The wearable system was used to record Achilles tendon wave speed at 100 Hz during 1-km outdoor walking trials in nine young adults. Inertial measurement units (IMUs) simultaneously monitored participant position, walking speed, and ground incline. An analysis of 5108 walking strides revealed the coupled biomechanical effects of terrain slope and walking speed on tendon loading. Uphill slopes increased the tendon wave speed during push-off, whereas downhill slopes increased tendon wave speeds during early stance braking. Walking speed significantly modulated peak tendon wave speed on uphill slopes but had less influence on downhill slopes. Walking speed consistently induced greater early stance wave speeds for all slopes. These observations demonstrate that wearable shear wave tensiometry holds promise for evaluating tendon tissue kinetics in natural environments and uncontrolled movements. There are numerous practical applications of wearable tensiometry spanning orthopedics, athletics, rehabilitation, and ergonomics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506797 | PMC |
http://dx.doi.org/10.3390/s20174805 | DOI Listing |
Adv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhengjiang, China.
The hydrodynamic performance of a Savonius type turbine (S-type turbine) in wave field is studied. The method of combining numerical simulation with physical experiment is adopted.Based on linear wave theory and turbulence model, Star CCM+numerical simulation software is used for digital modeling, and overlapping grid technology is used for grid modeling.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, UNSW Sydney, NSW, Australia.
Background: Subjective cognitive complaints (SCCs) and neuropsychiatric symptoms (NPS) are emerging as potential early indicators of neurodegenerative diseases like Alzheimer's disease (AD). SCCs refers to a self-perceived decline in cognitive abilities without objective impairment, while NPS describe neuropsychiatric symptoms that emerge in later life that may precede or co-occur with cognitive decline. This study explores the association between SCCs, NPS, global cognition, and incident dementia using data from the Sydney Memory and Ageing Study (MAS).
View Article and Find Full Text PDFISME J
January 2025
Center for Fundamental and Applied Microbiomics, Biodesign Institue, Arizona State University, Tempe, AZ 85287.
The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.
View Article and Find Full Text PDFJ Int Neuropsychol Soc
January 2025
School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands.
Objective: This study aimed to investigate the prevalence and nature of cognitive impairment among severely ill COVID-19 patients and the effectiveness of the Montreal Cognitive Assessment (MoCA) in detecting it.
Method: We evaluated cognition in COVID-19 patients hospitalized during the first wave (March to June 2020) from six Dutch hospitals, nine months post-discharge, using a comprehensive multi-domain neuropsychological test battery. Test performance was corrected for sex, age, and education differences and transformed into -scores.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!