Orchids form endomycorrhizal associations with fungi mainly belonging to basidiomycetes. The molecular events taking place in orchid mycorrhiza are poorly understood, although the cellular changes necessary to accommodate the fungus and to control nutrient exchanges imply a modulation of gene expression. Here, we used proteomics and transcriptomics to identify changes in the steady-state levels of proteins and transcripts in the roots of the green terrestrial orchid . When mycorrhizal and non-mycorrhizal roots from the same individuals were compared, 94 proteins showed differential accumulation using the label-free protein quantitation approach, 86 using isobaric tagging and 60 using 2D-differential electrophoresis. After assembly of transcriptomic data, 11,179 plant transcripts were found to be differentially expressed, and 2175 were successfully annotated. The annotated plant transcripts allowed the identification of up- and down-regulated metabolic pathways. Overall, proteomics and transcriptomics revealed, in mycorrhizal roots, increased levels of transcription factors and nutrient transporters, as well as ethylene-related proteins. The expression pattern of proteins and transcripts involved in plant defense responses suggested that plant defense was reduced in mycorrhizal roots sampled in nature. These results expand our current knowledge towards a better understanding of the orchid mycorrhizal symbiosis in adult plants under natural conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558880 | PMC |
http://dx.doi.org/10.3390/jof6030148 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.
As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Faculty of Science, Department of Biology, Ondokuz Mayis University, Samsun, 55139, Türkiye.
Interactions with mycorrhizal fungi are increasingly recognized as crucial ecological factors influencing orchids' distribution and local abundance. While some orchid species interact with multiple fungal partners, others show selectivity in their mycorrhizal associations. Additionally, orchids that share the same habitat often form relationships with different fungal partners, possibly to reduce competition and ensure stable coexistence.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.
View Article and Find Full Text PDFMicroorganisms
December 2024
Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.
is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!