The evaluation of collagen architecture of the dermis in response to mechanical stimulation is important as it affects the macroscopic mechanical properties of the dermis. A detailed understanding of the processes involved in the alteration of the collagen structure is required to correlate the mechanical stimulation with tissue remodeling. This study investigated the effect of cyclic frequencies i.e. low (0.1 Hz), medium (2.0 Hz), and high (5.0 Hz) (physiological range) in the alteration of pig dermis collagen structure and its correlation with the macroscopic mechanical response of the dermis. The assessment of the collagen structure of virgin and mechanical tested specimens at tropocollagen, collagen fibril, and fiber level was performed using Fourier-transform infrared-attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), and scanning electron microscopy (SEM) respectively. After 10 cycles, a significantly higher alteration in collagen structure with discrete plastic-type damage was found for low frequency. This frequency dependent alteration of the collagen structure was found in correlation with the dermis macroscopic response. The value of inelastic strain, stress softening, damage parameter (reduction in elastic modulus), and reduction in energy dissipation were observed significantly large for slow frequency. A power-law based empirical relations, as a function of frequency and number of cycles, were proposed to predict the value of inelastic strain and damage parameter. This study also suggests that hierarchical structural response against the mechanical stimulation is time-dependent rather than cycle-dependent, may affect the tissue remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.104030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!