The combination of photothermal and photodynamic therapy (PTT/PDT) shows pronounced potential as a prominent therapeutic strategy for tumor treatment. However, the efficacy is limited by insufficient tumor-targeted delivery of PTT and PDT reagents and the hypoxic nature of the tumor microenvironment. To overcome these limitations, tumor acidity-responsive lipid membrane-enclosed perfluorooctyl bromide oil droplet nanoparticles (NPs) surface modified with N-acetyl histidine-modified D-α-tocopheryl polyethylene glycol 1000 succinate (PFOB@IMHNPs) were developed, capable of co-delivering oxygen, IR780 (a photothermal agent) and mTHPC (a photodynamic sensitizer) into tumors. Through self-sufficient oxygen transportation in combination with promotion of cellular uptake upon acid-triggered generation of surface positive charge, the PFOB@IMHNPs effectively delivered IR780 and mTHPC and produced singlet oxygen within hypoxic TRAMP-C1 cells following exposure to irradiation at 660 nm. This led to effective killing of hypoxic cancer cells in vitro. Importantly, when irradiation at 808 and 660 nm was carried out, PT/PD combination therapy utilizing PFOB@IMHNPs dramatically suppressed the growth of TRAMP-C1 tumors through effective tumor-targeted cargo delivery and relief of tumor hypoxia. Our results suggest the high potential of the PFOB@IMHNPs developed in this study in clinical application for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.08.038DOI Listing

Publication Analysis

Top Keywords

oil droplet
8
droplet nanoparticles
8
combination therapy
8
pfob@imhnps developed
8
tumor
5
tumor microenvironment-responsive
4
oxygen
4
microenvironment-responsive oxygen
4
oxygen self-sufficient
4
self-sufficient oil
4

Similar Publications

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.

Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.

View Article and Find Full Text PDF

Pequi Pulp () Oil-Loaded Emulsions as Cosmetic Products for Topical Use.

Polymers (Basel)

January 2025

Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.

The pequi () is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized.

View Article and Find Full Text PDF

Background: Intravenous nanoemulsions (NEs) are gaining attention as potential delivery systems for poorly water-soluble substances like cannabidiol (CBD). This study aimed to develop novel NEs based on CBD-enriched hemp oils and evaluate their physiochemical properties.

Methods: The stability of hemp oils enriched with various concentrations of CBD (0.

View Article and Find Full Text PDF

(Lepidoptera: Nolidae) is a major pest of cotton and other crops in Egypt, and the widespread use of insecticides has led to resistance. This study evaluates, for the first time, the bioactivity of (Malpighiales: Euphorbiaceae) oil and its nano-emulsion (CTNE) against 25 newly hatched larvae of Boisd. We assessed their biological effects across different developmental stages and performed histological and ultrastructural examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!