New formulations for prediction of velocity at limit of deposition in storm sewers based on a stochastic technique.

Water Sci Technol

Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam and Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran E-mail:

Published: June 2020

Sedimentation in storm sewers strongly depends on velocity at limit of deposition. This study provides application of a novel stochastic-based model to predict the densimetric Froude number in sewer pipes. In this way, the generalized likelihood uncertainty estimation (GLUE) is used to develop two parametric equations, called GLUE-based four-parameter and GLUE-based two-parameter (GBTP) models to enhance the prediction accuracy of the velocity at the limit of deposition. A number of performance indices are calculated in training and testing phases to compare the developed models with the conventional regression-based equations available in the literature. Based on the obtained performance indices and some graphical techniques, the research findings confirm that a significant enhancement in prediction performance is achieved through the proposed GBTP compared with the previously developed formulas in the literature. To make a quantified comparison between the established and literature models, an index, called improvement index (IM), is computed. This index is a resultant of all the selected indices, and this indicator demonstrates that GBTP is capable of providing the most performance improvement in both training (IM = 9.2%) and testing (IM = 11.3%) phases, comparing with a well-known formula in this context.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2020.321DOI Listing

Publication Analysis

Top Keywords

velocity limit
12
limit deposition
12
storm sewers
8
performance indices
8
formulations prediction
4
prediction velocity
4
deposition storm
4
sewers based
4
based stochastic
4
stochastic technique
4

Similar Publications

This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances L and L of the electrical machine is necessary.

View Article and Find Full Text PDF

Influence of antifreeze protein III on canine sperm cryopreservation.

Theriogenology

January 2025

Veterinary Clinic for Reproductive Medicine and Neonatology, Justus Liebig-University of Giessen, Germany.

Sperm cryopreservation is crucial in reproductive biotechnology; however, the longevity of frozen and thawed semen is limited by the deterioration of sperm cell integrity. This study aimed to examine the effects of adding antifreeze protein III (AFP III) to the diluent, using samples from eight healthy mature dogs. The ejaculates were divided into aliquots and diluted with a standard Tris-fructose-egg yolk extender containing AFP III at concentrations of 0, 0.

View Article and Find Full Text PDF

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Post-stroke spasticity (PSS), characterized by a velocity-dependent increase in muscle tone and exaggerated reflexes, affects a significant portion of stroke patients and presents a substantial obstacle to post-stroke rehabilitation. Effective management and treatment for PSS remains a significant clinical challenge in the interdisciplinary aspect depending on the understanding of its etiologies and pathophysiology. We systematically review the relevant literature and provide the main pathogenic hypotheses: alterations in the balance of excitatory and inhibitory inputs to the descending pathway or the spinal circuit, which are secondary to cortical and subcortical ischemic or hemorrhagic injury, lead to disinhibition of the stretch reflex and increased muscle tone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!