Wall-bounded turbulent flows can take different statistically stationary turbulent states, with different transport properties, even for the very same values of the control parameters. What state the system takes depends on the initial conditions. Here we analyze the multiple states in large-aspect ratio (Γ) two-dimensional turbulent Rayleigh-Bénard flow with no-slip plates and horizontally periodic boundary conditions as model system. We determine the number n of convection rolls, their mean aspect ratios Γ_{r}=Γ/n, and the corresponding transport properties of the flow (i.e., the Nusselt number Nu), as function of the control parameters Rayleigh (Ra) and Prandtl number. The effective scaling exponent β in Nu∼Ra^{β} is found to depend on the realized state and thus Γ_{r}, with a larger value for the smaller Γ_{r}. By making use of a generalized Friedrichs inequality, we show that the elliptical shape of the rolls and viscous damping determine the Γ_{r} window for the realizable turbulent states. The theoretical results are in excellent agreement with our numerical finding 2/3≤Γ_{r}≤4/3, where the lower threshold is approached for the larger Ra. Finally, we show that the theoretical approach to frame Γ_{r} also works for free-slip boundary conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.074501 | DOI Listing |
J AOAC Int
January 2025
Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA, USA 94085.
Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA.
Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals of concern for both human and environmental health because of their ubiquitous presence in the environment, persistence, and potential toxicological effects. Despite this, ecological hazard data are limited to a small number of PFAS even though there are over 4000 identified PFAS. Traditional toxicity testing will likely be inadequate to generate necessary hazard information for risk assessment.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.
Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.
Discov Oncol
January 2025
Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
Background: Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events.
View Article and Find Full Text PDFClin Drug Investig
January 2025
Medical Science Department, Shionogi & Co., Ltd., Osaka, Japan.
Background: Anti-obesity medications are recommended for patients who do not achieve and maintain weight loss despite lifestyle interventions. S-309309 is a novel oral inhibitor of monoacylglycerol O-acyltransferase 2 being developed as a treatment for obesity.
Objective: The objective of the study was to investigate the safety, clinical pharmacology, pharmacokinetics and pharmacodynamic biomarker of S-309309.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!