Deep Red Blinking Fluorophore for Nanoscopic Imaging and Inhibition of β-Amyloid Peptide Fibrillation.

ACS Nano

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.

Published: September 2020

Deposition and aggregation of β-amyloid (Aβ) peptides are demonstrated to be closely related to the pathogenesis of Alzheimer's disease (AD). Development of functional molecules capable of visualizing Aβ aggregates with nanoscale resolution and even modulating Aβ assembly has attracted great attention recently. In this work, we use monocyanine fluorophore as the lead structure to develop a set of deep red carbazole-based cyanine molecules, which can specifically bind with Aβ fibril electrostatic and van der Waals interactions. Spectroscopic and microscopic characterizations demonstrate that one of these fluorophores, ()-1-(2-(2-methoxyethoxy)ethyl)-4-(2-(9-methyl-9H-carbazol-3-yl)vinyl) quinolinium iodide (me-slg) can bind to Aβ aggregates with strong fluorescence enhancement. The photophysical properties of me-slg at the single-molecule level, including low "on/off" duty cycle, high photon output, and sufficient switching cycles, enable real-time nanoscopic imaging of Aβ aggregates. Morphology-dependent toxic effect of Aβ aggregates toward PC12 cells is unveiled from nanoscopic fluorescence imaging. In addition, me-slg displays a strong inhibitory effect on Aβ fibrillation in a low inhibitor-protein ratio (.., I:P = 0.2). A noticeably reduced cytotoxic effect of Aβ after the addition of me-slg is also confirmed. These results afford promising applications in the design of a nanoscopic imaging probe for amyloid fibril as well as the development of inhibitors to modulate the fibrillation process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c03400DOI Listing

Publication Analysis

Top Keywords

aβ aggregates
16
nanoscopic imaging
12
9
deep red
8
bind aβ
8
addition me-slg
8
red blinking
4
blinking fluorophore
4
nanoscopic
4
fluorophore nanoscopic
4

Similar Publications

ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.

View Article and Find Full Text PDF

Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase.

Biosci Rep

December 2017

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, U.S.A.

Article Synopsis
  • *Key to Hsp104's function are specific amino acid loops in its ATP-binding domains that play crucial roles in substrate translocation and interaction.
  • *Research shows that both flanking aliphatic residues and loop-2 are vital for Hsp104's activity; mutations can significantly impair its function in disaggregating proteins.
View Article and Find Full Text PDF

Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase.

Front Mol Biosci

February 2017

Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany.

The members of the hexameric AAA+ disaggregase of and , ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis.

View Article and Find Full Text PDF

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

J Biol Chem

April 2015

From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan

Article Synopsis
  • * The chaperone utilizes ATP binding and hydrolysis to generate mechanical force necessary for disaggregating proteins, although the details of its ATPase cycle remain complex and poorly understood across different species.
  • * Research on ordered structures of ClpB from Thermus thermophilus revealed that ATP binding is random initially, but once enough ATP binds to one ring, it activates the other ring for cooperative ATP hydrolysis, which is essential for the protein disaggregation function of ClpB.
View Article and Find Full Text PDF

ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!