This study aimed to evaluate the flexural strength (FS) and modulus of elasticity (ME) of 2 provisional resins at different thicknesses and after different storage periods. A total of 80 specimens were made of 2 provisional restorative materials (n = 40): Dencôr (DC) or Protemp 4 (PT). The specimens in each material group were prepared in 2 different thicknesses (n = 20): 1.5 mm or 2.0 mm. The groups were further subdivided by storage time (n = 10 per material thickness per time): 7 days or 3 months. A 3-point bending test was performed with a universal testing machine. Data were submitted to 3-way analysis of variance followed by a post hoc Tukey test (α = 0.05). Regarding the interaction of material and thickness, the 2.0-mm-thick DC specimens presented a significantly lower mean FS (41.08 MPa) than the other groups (P < 0.05). Regarding the interaction of material and storage time, PT after 3 months presented a significantly higher mean FS (75.51 MPa) than the other groups and periods (P < 0.05). Regardless of the material, the highest mean ME was found in the 1.5-mm-thick group after 3 months (2.24 GPa) (P < 0.05). The lowest ME values were found in the 2.0-mm-thick specimens after both storage times (7 days, 0.88 GPa; 3 months, 1.09 GPa), which were not significantly different from each other (P > 0.05). The correlation between FS and ME was direct and positive (R = 0.51; P < 0.001), independently of the variables (material, thickness, and time). Therefore, 2.0-mm-thick PT specimens presented the highest values of FS, mainly after 3 months. The ME was higher after 3 months (1.5-mm-thick specimens), regardless of the material. In addition, the higher the FS, the higher the ME of the material.
Download full-text PDF |
Source |
---|
JACS Au
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware DE 19716, United States.
Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
December 2024
University of Houston, Department of Physics, Houston, Texas, United States.
Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany.
Transforming thin films into high-order stacks has proven effective for robust energy storage in macroscopic configurations like cylindrical, prismatic, and pouch cells. However, the lack of tools at the submillimeter scales has hindered the creation of similar high-order stacks for micro- and nanoscale energy storage devices, a critical step toward autonomous intelligent microsystems. This Spotlight on Applications article presents recent advancements in micro-origami technology, focusing on shaping nano/micrometer-thick films into three-dimensional architectures to achieve folded or rolled structures for microscale energy storage devices.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.
This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Department of Thermodynamics, Mechanical Engineering and Energy, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia.
The article discusses the importance of optimizing process parameters in 3D printing to achieve better mechanical properties of printed parts. It emphasizes the material extrusion 3D printing technology and some of the most commonly used materials, acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PETG). Optimizable process parameters such as, print angle, outer layer number, extruder flow ratio, extrusion (nozzle) temperature, and layer thickness are examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!