On the X-ray Scattering Pre-peak of Linear Mono-ols and the Related Microstructure from Computer Simulations.

J Phys Chem B

Laboratoire de Physique Thé orique de la Matière Condensé e (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, Paris F75252 cedex 05, France.

Published: September 2020

The X-ray scattering intensities (()) of linear alkanols OH(CH)CH obtained from experiments (methanol to 1-undecanol) and computer simulations (methanol to 1-nonanol) of different force field models are comparatively studied particularly in order to explain the origin and the properties of the scattering pre-peak in the -vector range 0.3-1 Å. The experimental () values show two apparent features: the pre-peak position decreases with increasing , and more intriguingly, the amplitude goes through a maximum at 1-butanol ( = 4). The first feature is well reproduced by all force-field models, while the second shows strong model dependence. The simulations reveal various shapes of clusters of the hydroxyl head-group from >2. is directly related to the size of the meta-objects corresponding to such clusters surrounded by their alkyl tails. The explanation of the turnover at = 4 is more involved in terms of cancellations of atom-atom structure factor () contributions related to domain ordering. The flexibility of the alkyl tails tends to reduce the cross contributions, thus revealing the crucial importance of this parameter in the models. Force fields with all-atom representation are less successful in reproducing the pre-peak features for smaller alkanols, <6, possibly because they blur the charge ordering process since all atoms bear partial charges. The analysis clearly shows that it is not possible to obtain a model-free explanation of the features of ().

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c05932DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
8
scattering pre-peak
8
computer simulations
8
alkyl tails
8
pre-peak
4
pre-peak linear
4
linear mono-ols
4
mono-ols microstructure
4
microstructure computer
4
simulations x-ray
4

Similar Publications

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

When Photoelectrons Meet Gas Molecules: Determining the Role of Inelastic Scattering in Ambient Pressure X-ray Photoelectron Spectroscopy.

ACS Cent Sci

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Inelastic photoelectron scattering (IPES) by gas molecules, a critical phenomenon observed in ambient pressure X-ray photoelectron spectroscopy (APXPS), complicates spectral interpretation due to kinetic energy loss in the primary spectrum and the appearance of additional features at higher binding energies. In this study, we systematically investigate IPES in various gas environments using APXPS, providing detailed insights into interactions between photoelectrons emitted from solid surfaces and surrounding gas molecules. Core-level XPS spectra of Au, Ag, Zn, and Cu metals were recorded over a wide kinetic energy range in the presence of CO, N, Ar, and H gases, demonstrating the universal nature of IPES across different systems.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots.

View Article and Find Full Text PDF

A fluoroalkyl-containing electron acceptor (Y-SSM) is designed and synthesized to control the orientation of the benchmark non-fullerene acceptor Y6 in thin films. Due to the low surface energy of the two fluoroalkyl chains at the terminal part of Y-SSM, it spontaneously segregates to the film surface during spin coating, forming a monolayer of edge-on oriented Y-SSM. The Y-SSM monolayer leads to crystallization of the underlying Y6 to induce a standing-up orientation in the bulk of the films, which is strikingly different from pure Y6 films that tend to be a face-on orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!