Anomaly detection (AD) in high-volume environmental data requires one to tackle a series of challenges associated with the typical low frequency of anomalous events, the broad-range of possible anomaly types, and local nonstationary environmental conditions, suggesting the need for flexible statistical methods that are able to cope with unbalanced high-volume data problems. Here, we aimed to detect anomalies caused by technical errors in water-quality (turbidity and conductivity) data collected by automated in situ sensors deployed in contrasting riverine and estuarine environments. We first applied a range of artificial neural networks that differed in both learning method and hyperparameter values, then calibrated models using a Bayesian multiobjective optimization procedure, and selected and evaluated the "best" model for each water-quality variable, environment, and anomaly type. We found that semi-supervised classification was better able to detect sudden spikes, sudden shifts, and small sudden spikes, whereas supervised classification had higher accuracy for predicting long-term anomalies associated with drifts and periods of otherwise unexplained high variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c04069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!