Development of liver microtissues with functional biliary ductular network.

Biotechnol Bioeng

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Published: January 2021

Liver tissue engineering aims to create transplantable liver grafts that can serve as substitutes for donor's livers. One major challenge in creating a fully functional liver tissue has been to recreate the biliary drainage in an engineered liver construct through integration of bile canaliculi (BC) with the biliary ductular network that would enable the clearance of bile from the hepatocytes to the host duodenum. In this study, we show the formation of such a hepatic microtissue by coculturing rat primary hepatocytes with cholangiocytes and stromal cells. Our results indicate that within the spheroids, hepatocytes maintained viability and function for up to 7 days. Viable hepatocytes became polarized by forming BC with the presence of tight junctions. Morphologically, hepatocytes formed the core of the spheroids, while cholangiocytes resided at the periphery forming a monolayer microcysts and tubular structures extending outward. The spheroids were subsequently cultured in clusters to create a higher order ductular network resembling hepatic lobule. The cholangiocytes formed functional biliary ductular channels in between hepatic spheroids that were able to collect, transport, and secrete bile. Our results constitute the first step to recreate hepatic building blocks with biliary drainage for repopulating the whole liver scaffolds to be used as transplantable liver grafts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775340PMC
http://dx.doi.org/10.1002/bit.27546DOI Listing

Publication Analysis

Top Keywords

biliary ductular
12
ductular network
12
functional biliary
8
liver tissue
8
transplantable liver
8
liver grafts
8
biliary drainage
8
liver
6
biliary
5
hepatocytes
5

Similar Publications

Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC.

View Article and Find Full Text PDF

Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury.

View Article and Find Full Text PDF

Background & Aims: Biliary epithelial senescence is involved in the pathogenesis of primary biliary cholangitis (PBC). We hypothesized that a unique subtype of programmed death-ligand 1 (PD-L1)-positive senescent biliary epithelial cells (BECs) may be related to the pathogenesis of PBC in association with cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) pathway.

Approach & Results: The expression of PD-L1, STING and their association with senescent markers p16 and p21 were immunohistochemically determined in livers taken from the patients with PBC (n = 87) and 97 diseased and normal control livers.

View Article and Find Full Text PDF

[Study on the mechanism of Fuzheng Huayu formula against biliary fibrosis in mice].

Zhonghua Gan Zang Bing Za Zhi

November 2024

Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai201203, China Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai201203, China.

Article Synopsis
  • The study aimed to explore how the Fuzheng huayu formula (FZHY) affects biliary fibrosis in mice by comparing its effects with obeticholic acid (OCA) and a control group.
  • Mice were treated with specific drugs over a 12-week period, and various liver health indicators, including serum enzyme levels and tissue markers, were analyzed using multiple biochemical techniques.
  • Results demonstrated that both FZHY and OCA effectively reduced the harmful effects of fibrosis in the gene knockout mice by reversing elevated liver indicators, improving markers of liver function, and influencing specific molecular pathways related to inflammation and cellular response.
View Article and Find Full Text PDF

Background: Extracellular matrix protein 1 (ECM1) can inhibit TGFβ activation, but its antifibrotic action remains largely unknown. This study aims to investigate ECM1 function and its physical interaction with the profibrotic connective tissue growth factor (CTGF) in fibrosis and ductular reaction (DR).

Methods: Ecm1 knockouts or animals that ectopically expressed this gene were subjected to induction of liver fibrosis and DR by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or α-naphthyl-isothiocyanate (ANIT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!