Here, we present a new diacetoxy-functionalized UiO-66 metal-organic framework (MOF) for the trace level detection of hydrazine in water. The MOF material (1) was solvothermally prepared by the reaction between ZrOCl2·8H2O and 2,5-diacetoxy-1,4-benzenedicarboxylic acid (H2BDC-(OCOCH3)2). The desolvated material (1') showed a highly selective fluorescent turn-on signal towards hydrazine in water, which can be visualized by the naked eye under a UV lamp. Within 1 min of hydrazine addition, there was 14-fold fluorescence enhancement. The probe can detect hydrazine up to the nanomolar level (detection limit = 78.8 nM) in water. This detection limit is the lowest among MOF-based fluorescent probes for hydrazine. The material was also utilized for the sensing of hydrazine in paper strips and environmental water samples. Hydrazine-selective deprotection of ester groups anchored with the ligand is the principal reason behind the switch-on nature of sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt02491k | DOI Listing |
Small
January 2025
Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Mikrochim Acta
December 2024
College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
A nanocomposite consisting of gold nanoparticles (AuNPs), poly(diallyldimethylammonium chloride) (PDDA), and reduced graphene oxide (rGO) was fabricated by a two-step chemical reduction method. Firstly, a PDDA-rGO composite was prepared by using hydrazine hydrate as a reducing agent. Subsequently, the AuNP-PDDA-rGO composite was prepared in ethylene glycol with PDDA-rGO and HAuCl as raw materials using sodium citrate as a reduction agent.
View Article and Find Full Text PDFChem Sci
December 2024
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
Hydrazine-assisted water splitting is a promising strategy for energy-efficient hydrogen production, yet challenges remain in developing effective catalysts that can concurrently catalyze both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) in acidic media. Herein, we report an effective bifunctional catalyst consisting of Rh clusters anchored on CoO branched nanosheets (Rh-CoO BNSs) synthesized an innovative arginine-induced strategy. The Rh-CoO BNSs exhibit unique Rh-O-Co interfacial sites that facilitate charge redistribution between Rh clusters and the CoO substrate, thereby optimizing their valence electronic structures.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Grupo MINTOTA, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, C/ Dr. Moliner 50, Burjassot, Valencia E46100, Spain.
In this work, a DNPH doped PDMS based membrane was developed to facilitate carbonyl compound derivatization. This membrane delivers DNPH in presence of carbonyl compounds to form hydrazones. Subsequently, the resulting hydrazones are preconcentrated, separated and detected by in-tube solid phase microextraction (IT-SPME) coupled on-line with capillary liquid chromatography (CapLC) with Uv-Vis diode array detection (DAD).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
In this study, waste polystyrene was modified and upgraded to prepare formylated polystyrene, and the modified polystyrene acetyl hydrazone (LT-HPA) was synthesized by condensation with polymethyl-propionyl-hydrazine. It is proven that the modification of the adsorption material is successful by various characterization methods. In the subsequent pollutant removal study, pH, mass, concentration, contact time, and salt ion interference were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!