Dynamics of Live Oil Droplets and Natural Gas Bubbles in Deep Water.

Environ Sci Technol

RPS Ocean Science, South Kingstown, Rhode Island 02879, United States.

Published: October 2020

Explaining the dynamics of gas-saturated live petroleum in deep water remains a challenge. Recently, Pesch et al. [ 2018, 35 (4), 289-299] reported laboratory experiments on methane-saturated oil droplets under emulated deep-water conditions, providing an opportunity to elucidate the underlying dynamical processes. We explain these observations with the Texas A&M Oil spill/Outfall Calculator (TAMOC), which models the pressure-, temperature-, and composition-dependent interactions between oil-gas phase transfer; aqueous dissolution; and densities and volumes of liquid oil droplets, gas bubbles, and two-phase droplet-bubble pairs. TAMOC reveals that aqueous dissolution removed >95% of the methane from ∼3.5 mm live oil droplets within 14.5 min, prior to gas bubble formation, during the experiments of Pesch et al. Additional simulations indicate that aqueous dissolution, fluid density changes, and gas-oil phase transitions (ebullition, condensation) may all contribute to the fates of live oil and gas in deep water, depending on the release conditions. Illustrative model scenarios suggest that 5 mm diameter gas bubbles released at a <470 m water depth can transport methane, ethane, and propane to the water surface. Ethane and propane can reach the water surface from much deeper releases of 5 mm diameter live oil droplets, during which ebullition occurs at water depths of <70 m.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b06242DOI Listing

Publication Analysis

Top Keywords

oil droplets
16
live oil
12
gas bubbles
12
deep water
12
aqueous dissolution
12
oil
6
gas
5
dynamics live
4
droplets
4
droplets natural
4

Similar Publications

Lipid droplet formation induced by icaritin derivative IC2 promotes a combination strategy for cancer therapy.

Chin Med

December 2024

MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China.

Background: Lipid metabolism is crucial in cancer progression. Lipid droplets (LDs) generated in cancer cells can act as protective mechanisms through alleviating lipotoxicity under stress conditions. We previously developed IC2 from the Chinese medicine icaritin as an inhibitor of stearoyl-CoA desaturase 1 (SCD1).

View Article and Find Full Text PDF

In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants.

View Article and Find Full Text PDF

To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.

View Article and Find Full Text PDF

In this research, the emulsification method was used to encapsulate in microparticles of whey protein concentrate (WPC) at different levels (1%, 2%, and 4%) and gum Arabic (GA) at three levels (0/5%, 1%, and 1/5%) and a constant level of sunflower oil (5%). The results showed that emulsions with higher quantities of wall materials exhibited better encapsulation efficiency (67%/57%) and preservation ability at different temperatures, different pH, and presence of 1% bile salt. During the storage time, the droplet size of the emulsion increased more than two times (from 2.

View Article and Find Full Text PDF

This study aimed to investigate the effects of short-term exposure of Bisphenol A (BPA) on the growth and lactation performance, blood parameters, and milk composition of lactating rabbits and explore its potential molecular mechanisms. Eight lactating rabbits with similar body weight were selected and randomly divided into the experimental group (BPA) and the control group (Ctrl). The group BPA was orally administered 80 mg/kg/day BPA on the 15th day postpartum, while the group Ctrl received a corresponding volume of vehicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!