Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage.

Chem Rev

Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

Published: September 2020

Employing phenols and phenol derivatives as electrophiles for cross-coupling reactions has numerous advantages over commonly used aryl halides in terms of environmental-friendliness and sustainability. In the early stage of discovering such transformations, most efforts have been devoted to utilizing highly activated sulfonate types of phenol derivatives (e.g., OTf, OTs, etc.), which have similar reactivities to the corresponding aryl halides. However, a continuing scientific challenge is how to achieve the direct C-O functionalizations of relatively less-activated phenol derivatives more efficiently. In this review, we will focus on the recent updates on the C-O functionalizations of less-activated phenol derivatives, from aryl carboxylates (e.g., pivalates, acetates, etc.), aryl carbamates and carbonates, to aryl ethers (anisoles, diaryl ethers, aryl pyridyl ethers, aryl silyl ethers), to phenolate salts, and ultimately to simply unprotected phenols, sorted by the types of bond formations. Both transition-metal-catalyzed and transition-metal-free protocols will be covered and discussed in detail. Instead, the C-O functionalizations of aryl sulfonates will not be covered extensively unless they are closely related, due to their high reactivity. Since aryl ethers and phenols represent the main linkages or units in lignin biomass, the successes of such transformations will potentially make major contributions to the direct lignin biomass upgrading and depolymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.0c00088DOI Listing

Publication Analysis

Top Keywords

phenol derivatives
20
c-o functionalizations
12
aryl
9
phenols phenol
8
aryl halides
8
functionalizations less-activated
8
less-activated phenol
8
aryl ethers
8
ethers aryl
8
will covered
8

Similar Publications

Research on natural antioxidants derived from plants has surged due to their potential health benefits. In the current study, the chemical composition, enzyme inhibitory activity, and antimicrobial effects of the Elaeagnus angustifolia L. plant, including leaves, flowers, and flower stalks extracts, were analyzed.

View Article and Find Full Text PDF

NLRP3 inflammasome inhibitor is a highly attractive drug target for the treatment of various inflammatory diseases. Here, we report the discovery of pyridazine derivatives as a new class of scaffold for NLRP3 inflammasome inhibitors. We optimized HTS hit 2a to improve both in vitro IL-1β inhibitory activity and the mean photo effect (MPE) value in the in vitro 3T3 neutral red uptake (NRU) phototoxicity test.

View Article and Find Full Text PDF

Introduction: Rheumatoid arthritis is an autoimmune disease that mainly causes joint damage. The patient experiences loss of appetite, pain, fever, and fatigue. The present study was designed to phytochemically characterize and evaluate the anti-arthritic activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using the hydroalcoholic extract of roots in an adjuvant-induced arthritic rat model.

View Article and Find Full Text PDF

Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.

View Article and Find Full Text PDF

Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies.

Biotechnol Adv

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!