Current approaches to design monodisperse protein assemblies require rigid, tight, and symmetric interactions between oligomeric protein units. Herein, we introduce a new multivalent-interaction-driven assembly strategy that allows flexible, spaced, and asymmetric assembly between protein oligomers. We discovered that two polygonal protein oligomers (ranging from triangle to hexagon) dominantly form a discrete and stable two-layered protein prism nanostructure via multivalent interactions between fused binding pairs. We demonstrated that protein nano-prisms with long flexible peptide linkers (over 80 amino acids) between protein oligomer layers could be discretely formed. Oligomers with different structures could also be monodispersely assembled into two-layered but asymmetric protein nano-prisms. Furthermore, producing higher-order architectures with multiple oligomer layers, for example, 3-layered nano-prisms or nanotubes, was also feasible.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202010054DOI Listing

Publication Analysis

Top Keywords

protein nano-prisms
12
protein
9
multivalent-interaction-driven assembly
8
protein oligomers
8
oligomer layers
8
assembly discrete
4
discrete flexible
4
flexible asymmetric
4
asymmetric supramolecular
4
supramolecular protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!