, a green micro-alga can be grown at the lab heterotrophically or photo-heterotrophically in Tris-Phosphate-Acetate (TAP) medium which contains acetate as the sole carbon source. When grown in TAP medium, can utilize the exogenous acetate in the medium for gluconeogenesis using the glyoxylate cycle, which is also present in many bacteria and higher plants. A novel bacterial strain, LMJ, was isolated from a contaminated TAP medium plate of . We present our work on the isolation and physiological and biochemical characterizations of LMJ. Several microbiological tests were conducted to characterize LMJ, including its sensitivity to four antibiotics. We amplified and sequenced partially the 16S rRNA gene of LMJ. We tested if LMJ can utilize cyclic alkanes, aromatic hydrocarbons, poly-hydroxyalkanoates, and fresh and combusted car motor oil as the sole carbon source on Tris-Phosphate (TP) agar medium plates for growth. LMJ is a gram-negative rod, oxidase-positive, mesophilic, non-enteric, pigmented, salt-sensitive bacterium. LMJ can ferment glucose, is starch hydrolysis-negative, and is very sensitive to penicillin and chloramphenicol. Preliminary spectrophotometric analyses indicate LMJ produces pyomelanin. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of LMJ showed that it matched to that of an uncultured bacterium clone LIB091_C05_1243. The nearest genus relative of LMJ is an sp. strain. LMJ was able to use alkane hydrocarbons, fresh and combusted car motor oil, poly-hydroxybutyrate, phenanthrene, naphthalene, benzoic acid and phenyl acetate as the sole carbon source for growth on TP-agar medium plates. LMJ has 99.14% sequence identity with the sp. strain A16OP12 whose genome has not been sequenced yet. LMJ's ability to use chemicals that are common environmental pollutants makes it a promising candidate for further investigation for its use in bioremediation and, provides us with an incentive to sequence its genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425125 | PMC |
http://dx.doi.org/10.12688/f1000research.24680.1 | DOI Listing |
Sorbitol is an important primary metabolite that serves as both a carbon source and signal to pathogens. The leaf diseases caused by Alternata alternata are particularly serious in crabapple (Malus micromalus). Here, we found that sorbitol can enhance the resistance of crabapple to A.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Zybio Inc, Chongqing, 400082, China.
Lipase (EC 3.1.1.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Miklukho-Maklaya Street, 117198, Moscow, Russia.
Globally, agricultural lands are among the top emitters of greenhouse gases (GHGs), responsible for over 20% of total greenhouse gas (GHG) emissions. Climatic conditions, an acute challenge in sub-Saharan Africa (SSA), where access to mitigation technologies remains limited, have heavily influenced these lands. This study explores GHG contributions from crop production and their devastating and deteriorating impacts on the economy and environment and proposes a sustainable solution.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
Because the interactions among contaminants may lead to enhanced toxicity, combined pollution caused by the co-presence of multiple contaminants has increasingly gained public concern. p-Nitrophenol (PNP) and 1,2-dichloroethane (1,2-DCA) are frequently co-detected in groundwater. To completely eliminate PNP, 1,2-DCA and intermediates from polluted sites, in this study, a novel degrader KTU-PDG was created by functional assembly of PNP and 1,2-DCA biodegradation pathways in a robust chassis Pseudomonas putida KT2440.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!