China needs to balance between current population pressures and a vulnerable marine environment, creating a national, political outline or management strategy dubbed an ecological civilization construction. The nation's effort to protect and maintain a sustainable ocean and address the relevant economic, resource and environmental issues relies on Marine Ecological Civilization (MEC) construction. The quantification of MEC progress is essential to track the management performance and guide the subsequent development and implementation. This study evaluates the performance of China's MEC from 2006 to 2016 based on a comprehensive index system. Our findings are as follows: During 2006-2016, the overall MEC performance score increased from 0.3426 to 0.4850 nationwide. Large space-time variations exist among the eleven coastal regions. The Shandong and Guangdong regions showed relatively good performances, whereas the Jiangsu, Guangxi and Shanghai regions had low scores. A decade long change in MEC scores showed that Hebei achieved the largest increase ratio. Marine management was improved by implementing various conservation strategies by China's government. Marine education and human talent introduction deserve more attention in less developed areas such as Hainan and Guangxi, and poor marine environmental quality was an urgent issue of the Yangtze river estuary economic zone. More accessible marine monitoring dataset are needed to track future space-time progress dynamics towards MEC construction. Our results provide a decade long retrospect of China's MEC achievements, and the quantified evaluation for each coastal region can provide valuable insight to policy-makers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111077 | DOI Listing |
Stem Cell Res Ther
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.
View Article and Find Full Text PDFPediatr Rheumatol Online J
January 2025
Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno- Infantili (DINOGMI), Università Degli Studi Di Genova, Genoa, Italy.
Background: Over the past two decades there has been a remarkable advance in the management of juvenile idiopathic arthritis (JIA), which has led to considerable improvement in prognosis. In 2018, the introduction of the treat-to-target (T2T) strategy in JIA has been advocated to further ameliorate disease outcome. To provide a benchmark for comparing future outcomes in the "T2T era", this study investigates the percentage of JIA patients who achieved clinical inactive disease (CID) in the decade that preceded the publication of the T2T recommendations in JIA.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
Periodontitis constitutes the primary cause of tooth loss among adults in China. The disease is characterized by the high morbidity, which significantly impairs both oral and systemic health. As the key insights of initial periodontal therapy, subgingival scaling and root planing (SRP) have been considered as simple, effective, and cost-efficient treatment approaches for managing periodontal inflammation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
BQE Water, Vancouver, BC, Canada.
Biological semi-passive mine water treatment technologies are used in the mining industry as an alternative to or in conjunction with active treatment systems to remediate mine impacted water (MIW) containing nitrate and selenium oxyanions such as selenate and selenite. In semi-passive biological treatment systems, MIW is pumped through a saturated, porous media (either a gravel bed or waste rock) which provides ample surface area for biofilm growth and the creation of anoxic, subaqueous environments. Additional nutrients and carbon sources are pumped into the system to encourage the growth of microbes that biochemically reduce selenate and selenite to insoluble reduced Se species such as selenium nanoparticles (SeNP) by respiring selenate and selenite.
View Article and Find Full Text PDFDNA Repair (Amst)
January 2025
Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!