Background: Methylxanthines, including caffeine, theobromine and theophylline, are natural and synthetic compounds in tea, which could be metabolized by certain kinds of bacteria and fungi. Previous studies confirmed that several microbial isolates from Pu-erh tea could degrade and convert caffeine and theophylline. We speculated that these candidate isolates also could degrade and convert theobromine through N-demethylation and oxidation. In this study, seven tea-derived fungal strains were inoculated into various theobromine agar medias and theobromine liquid mediums to assess their capacity in theobromine utilization. Related metabolites with theobromine degradation were detected by using HPLC in the liquid culture to investigate their potential application in the production of 3-methylxanthine.

Results: Based on theobromine utilization capacity, Aspergillus niger PT-1, Aspergillus sydowii PT-2, Aspergillus ustus PT-6 and Aspergillus tamarii PT-7 have demonstrated the potential for theobromine biodegradation. Particularly, A. sydowii PT-2 and A. tamarii PT-7 could degrade theobromine significantly (p < 0.05) in all given liquid mediums. 3,7-Dimethyluric acid, 3-methylxanthine, 7-methylxanthine, 3-methyluric acid, xanthine, and uric acid were detected in A. sydowii PT-2 and A. tamarii PT-7 culture, respectively, which confirmed the existence of N-demethylation and oxidation in theobromine catabolism. 3-Methylxanthine was common and main demethylated metabolite of theobromine in the liquid culture. 3-Methylxanthine in A. sydowii PT-2 culture showed a linear relation with initial theobromine concentrations that 177.12 ± 14.06 mg/L 3-methylxanthine was accumulated in TLM-S with 300 mg/L theobromine. Additionally, pH at 5 and metal ion of Fe promoted 3-methylxanthine production significantly (p < 0.05).

Conclusions: This study is the first to confirm that A. sydowii PT-2 and A. tamarii PT-7 degrade theobromine through N-demethylation and oxidation, respectively. A. sydowii PT-2 showed the potential application in 3-methylxanthine production with theobromine as feedstock through the N-demethylation at N-7 position.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453516PMC
http://dx.doi.org/10.1186/s12866-020-01951-zDOI Listing

Publication Analysis

Top Keywords

sydowii pt-2
12
theobromine
10
aspergillus sydowii
8
degrade convert
8
theobromine utilization
8
tamarii pt-7
8
aspergillus
5
3-methylxanthine production
4
production biodegradation
4
biodegradation theobromine
4

Similar Publications

Microbial fermentation, especially the microbes involved, plays a crucial role in the quality formation of dark tea. Over the last decade, numerous microbes have been isolated from dark tea and in turn, applied to dark tea manufacture through pure-strain, mixed-strain, and enhanced fermentation. This article systematically summarizes the specific metabolic function and quality contribution of tea-derived microbes, with special attention paid to their safety risk.

View Article and Find Full Text PDF

Background: Methylxanthines, including caffeine, theobromine and theophylline, are natural and synthetic compounds in tea, which could be metabolized by certain kinds of bacteria and fungi. Previous studies confirmed that several microbial isolates from Pu-erh tea could degrade and convert caffeine and theophylline. We speculated that these candidate isolates also could degrade and convert theobromine through N-demethylation and oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!