Oncolytic viruses are promising cancer therapies due to their selective killing of tumor cells and ability to stimulate the host immune system. As an oncolytic virus platform, vaccinia virus has unique advantages, including rapid replication, a broad range of host targets, and a large capacity for transgene incorporation. In this study, we developed a novel oncolytic vaccinia virus with high potency and a favorable safety profile. We began with the International Health Department-White (IHD-W) strain, which had the strongest cytotoxicity against tumor cells among the four vaccinia virus strains tested. Next, several candidate viruses were constructed by deleting three viral genes (, , and ) in various combinations, and their efficacy and safety were compared. The virus ultimately selected, named KLS-3010, exhibited strong antitumor activity against broad targets and . Furthermore, KLS-3010 showed a favorable safety profile in mice, as determined by the biodistribution and body weight change. More promisingly, KLS-3010 was able to shift the tumor microenvironment to a proinflammatory state, as evidenced by an increase in activated lymphocytes after KLS-3010 administration, suggesting that this strain may elicit an oncolytic virus-mediated immune response. The KLS-3010 strain thus represents a promising platform for the further development of oncolytic virus-based cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140350PMC
http://dx.doi.org/10.1089/hum.2020.050DOI Listing

Publication Analysis

Top Keywords

vaccinia virus
16
novel oncolytic
8
oncolytic vaccinia
8
ihd-w strain
8
cancer therapies
8
tumor cells
8
favorable safety
8
safety profile
8
oncolytic
6
virus
6

Similar Publications

Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.

View Article and Find Full Text PDF

An mpox quadrivalent mRNA vaccine elicits sustained and protective immunity in mice against lethal vaccinia virus challenge.

Emerg Microbes Infect

January 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.

Assessing the long-term efficacy of MPXV vaccine candidates is crucial for the global response to the ongoing mpox epidemic. Built upon our previous study of the mpox quadrivalent mRNA vaccine, herein we reported that MPXV-1103 could elicit sustained humoral and cellular immunity in mice, including the induction of MPXV A35/B6/A29/M1-specific IgG antibodies, VACV neutralizing antibodies and activated cytotoxic CD8T cells, which provides 100% protection against lethal VACV challenge even at 280 days after the first vaccination. Our results provide critical insights for orthopoxvirus vaccine development.

View Article and Find Full Text PDF

Heterologous protein expression often faces significant challenges, particularly when the target protein has posttranslational modifications, is toxic, or is prone to misfolding. These issues can result in low expression levels, aggregation, or even cell death. Such problems are exemplified by the expression of phospholipase p37, a critical target for chemotherapeutic drugs against pathogenic human orthopoxviruses, including monkeypox and smallpox viruses.

View Article and Find Full Text PDF

Modified Vaccinia Virus Ankara Selectively Targets Human Cancer Cells With Low Expression of the Zinc-Finger Antiviral Protein.

J Med Virol

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types.

View Article and Find Full Text PDF

The outbreak of clade II monkeypox virus (MPXV) and the additional outbreak in Central Africa of clade I virus from 2023 have attracted worldwide attention. The development of a scalable and effective vaccine against the ongoing epidemic of mpox is urgently needed. We previously constructed two bivalent MPXV mRNA vaccines, LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!