Functional Analysis of P450 Monooxygenase SrrO in the Biosynthesis of Butenolide-Type Signaling Molecules in .

Biomolecules

Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.

Published: August 2020

7434AN4 produces two structurally unrelated polyketide antibiotics lankacidin and lankamycin, and their biosynthesis is tightly controlled by butenolide-type signaling molecules SRB1 and SRB2. SRBs are synthesized by SRB synthase SrrX, and induce lankacidin and lankamycin production at 40 nM concentration. We here investigated the role of a P450 monooxygenase gene (), which is located adjacent to (), in SRB biosynthesis. An mutant KA54 accumulated lankacidin and lankamycin at a normal level when compared with the parent strain. To elucidate the chemical structures of the signaling molecules accumulated in KA54 (termed as KA54-SRBs), this mutant was cultured (30 L) and the active components were purified. Two active components (KA54-SRB1 and KA54-SRB2) were detected in ESI-MS and chiral HPLC analysis. The molecular formulae for KA54-SRB1 and KA54-SRB2 are CHO and CHO, whose values are one oxygen smaller and two hydrogen larger when compared with those for SRB1 and SRB2, respectively. Based on extensive NMR analysis, the signaling molecules in KA54 were determined to be 6'-deoxo-SRB1 and 6'-deoxo-SRB2. Gel shift analysis indicated that a ligand affinity of 6'-deoxo-SRB1 to the specific receptor SrrA was 100-fold less than that of SRB1. We performed bioconversion of the synthetic 6'-deoxo-SRB1 in the recombinant carrying SrrO-expression plasmid. Substrate 6'-deoxo-SRB1 was converted through 6'-deoxo-6'-hydroxy-SRB1 to SRB1 in a time-dependent manner. Thus, these results clearly indicated that SrrO catalyzes the C-6' oxidation at a final step in SRB biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564063PMC
http://dx.doi.org/10.3390/biom10091237DOI Listing

Publication Analysis

Top Keywords

signaling molecules
16
lankacidin lankamycin
12
p450 monooxygenase
8
butenolide-type signaling
8
srb1 srb2
8
srb biosynthesis
8
active components
8
ka54-srb1 ka54-srb2
8
functional analysis
4
analysis p450
4

Similar Publications

A molecular beacon is an oligonucleotide hybridization probe that can report the presence of specific nucleic acids in homogeneous solutions. Using an aptamer has allowed an aptamer-based molecular beacon-aptamer beacon to be developed, which has shown advantages of simplicity, rapidity, and sensitivity in imaging and sensing non-nucleic acid substances. However, due to requirement for a deliberate DNA hairpin structure for the preparation of a molecular beacon, not any given aptamer is suitable for designing an aptamer beacon probe.

View Article and Find Full Text PDF

ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway.

Cell Death Differ

January 2025

Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism.

View Article and Find Full Text PDF

HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies.

Immunol Rev

January 2025

Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK.

HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism.

View Article and Find Full Text PDF

The immune microenvironment related biomarker CCL18 for patients with gout by comprehensive analysis.

Comput Biol Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:

In the present study, we uncovered and validated potential biomarkers related to gout, characterized by the accumulation of sodium urate crystals in different joint and non-joint structures. The data set GSE160170 was obtained from the GEO database. We conducted differential gene expression analysis, GO enrichment assessment, and KEGG pathway analysis to understand the underlying processes.

View Article and Find Full Text PDF

Repressing cytokine storm-like response in macrophages by targeting the eIF2α-integrated stress response pathway.

Int Immunopharmacol

January 2025

Department of Geriatric Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China. Electronic address:

Cytokine storm is a life-threatening systemic hyper-inflammatory state caused by different etiologies, in which the bulk production of pro-inflammatory cytokines from activated macrophages has a central role. Integrated stress response (ISR) comprises several protective signaling pathways, leading to phosphorylation of eukaryotic initiation factor 2α (eIF2α) and repression of protein translation. Emerging evidence suggests that ISR induction may elicit anti-inflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!