Von Hippel-Lindau (VHL), is a rare autosomal dominant inherited cancer in which the lack of VHL protein triggers the development of multisystemic tumors such us retinal hemangioblastomas (HB), CNS-HB, and clear cell renal cell carcinoma (ccRCC). ccRCC ranks third in terms of incidence and first in cause of death. Standard systemic therapies for VHL-ccRCC have shown limited response, with recurrent surgeries being the only effective treatment. Targeting of β2-adrenergic receptor (ADRB) has shown therapeutic antitumor benefits on VHL-retinal HB (clinical trial) and VHL-CNS HB (in vitro). Therefore, the in vitro and in vivo antitumor benefits of propranolol (ADRB-1,2 antagonist) and ICI-118,551 (ADRB-2 antagonist) on VHL ccRCC primary cultures and 786-O tumor cell lines have been addressed. Propranolol and ICI-118,551 activated apoptosis inhibited gene and protein expression of HIF-2α, CAIX, and VEGF, and impaired partially the nuclear internalization of HIF-2α and NFĸB/p65. Moreover, propranolol and ICI-118,551 reduced tumor growth on two in vivo xenografts. Finally, ccRCC patients receiving propranolol as off-label treatment have shown a positive therapeutic response for two years on average. In summary, propranolol and ICI-118,551 have shown antitumor benefits in VHL-derived ccRCC, and since ccRCCs comprise 63% of the total RCCs, targeting ADRB2 becomes a promising drug for VHL and other non-VHL tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563408PMC
http://dx.doi.org/10.3390/jcm9092740DOI Listing

Publication Analysis

Top Keywords

antitumor benefits
12
propranolol ici-118551
12
targeting β2-adrenergic
8
clear cell
8
cell renal
8
renal cell
8
cell carcinoma
8
von hippel-lindau
8
cell
5
ccrcc
5

Similar Publications

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

Iodine-131 radioembolization boosts the immune activation enhanced by icaritin/resiquimod in hepatocellular carcinoma.

J Control Release

December 2024

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China. Electronic address:

Transarterial radioembolization (TARE) is a recommended locoregional strategy for intermediate hepatocellular carcinoma (HCC), whereas, the effect is insufficient to reverse the immunosuppression tumor microenvironment, and the overall benefits for patients remain to be improved. In this study, a multifunctional microsphere (MS) I-ICT/R848-MS is developed to propose an approach combined with TARE, icaritin (ICT) and immune modulator resiquimod (R848). ICT and iodine-131 (I) radiation can induce immunogenic cell death, which, in combination with R848, will boost dendritic cell (DC) maturation.

View Article and Find Full Text PDF

Towards Effective Treatment of Glioblastoma: The Role of Combination Therapies and the Potential of Phytotherapy and Micotherapy.

Curr Issues Mol Biol

December 2024

Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.

Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in improving long-term survival. Despite the emergence of new therapies, monotherapy approaches have not shown significant improvements, highlighting the need for innovative therapeutic strategies.

View Article and Find Full Text PDF

This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer.

View Article and Find Full Text PDF

Objective: Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis.

Methods: Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!