High doses of metformin induces oxidative stress (OS) and transforming growth factor β1 (TGF-β1) in breast cancer cells, which was associated with increased cancer stem cell population, local invasion, liver metastasis and treatment resistance. Considering the impact of TGF- β1 and OS in breast cancer and the interrelation between these two pathways, the objective of this work was to investigate the effects of consecutive metformin treatments, at a non-cytotoxic dosage, in TGF- β1 targets in MCF-7 and MDA-MB-231 cells. Cells were exposed to 6 μM of metformin for seven consecutive passages. Samples were collected to immunocytochemistry (evaluation of p53, Nf-кB, NRF2 and TGF-β1), biochemical (determination of lipoperoxidation, total thiols and nitric oxide/peroxynitrite levels) and molecular biology analyzes (microarray and Real-time quantitative array PCR). Microarray analysis confirmed alterations in genes related to OS and TGF-β1. Treatment interfered in several TGF-β1 target-genes. Metformin upregulated genes involved in OS generation and apoptosis, and downregulated genes associated with metastasis and epithelial mesenchymal transition in MCF-7 cells. In MDA-MB-231 cells, metformin downregulated genes involved with cell invasion, viability and proliferation. The results shows that even a non-cytotoxic dosage of metformin can promote a less aggressive profile of gene expression in breast cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2020.153135DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer cells
12
oxidative stress
8
mcf-7 mda-mb-231
8
tgf- β1
8
non-cytotoxic dosage
8
mda-mb-231 cells
8
genes involved
8
downregulated genes
8
metformin
7

Similar Publications

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Tumor microenvironment and immunotherapy for triple-negative breast cancer.

Biomark Res

December 2024

Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.

View Article and Find Full Text PDF

Introduction: Breast cancer is the leading cause of cancer amongst women in the United Kingdom, with implant-based reconstruction (IBR) using Acellular Dermal Matrices (ADM) gaining popularity for post-mastectomy procedures. This study compares outcomes of different ADMs that are commonly used in women undergoing IBR, this was short and long-term complications.

Methods: A systematic search of MEDLINE, Embase, CENTRAL, and CDSR databases was performed according to the PRISMA guidelines, focusing on women undergoing IBR with FlexHD, AlloDerm, Bovine, or Porcine ADMs.

View Article and Find Full Text PDF

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!