Octenidine (OCT) is a widely used antiseptic molecule with an antimicrobial spectrum covering a broad range of bacteria and fungi. However, the detailed molecular mechanism of killing has not yet been elucidated. The objective of our study was to investigate the mode of action of OCT's potent effect on Gram-negative bacteria using Escherichia coli as a model organism as well as corresponding model membranes. The effects of OCT on cellular morphology were observed by electron microscopy, changes affecting membrane integrity (surface charge, fluidity, permeabilisation and depolarisation) by zeta potential, fluorescence microscopy and spectroscopy. Specific interactions of OCT with membrane phospholipids were addressed using differential scanning calorimetry, X-ray scattering and fluorescence techniques. OCT neutralises the surface charge of E. coli leading to disruption of the outer membrane and dramatic loss of the cell wall and further penetrates through the periplasmic space reaching the inner membrane. Model membranes showed that OCT inserts into the hydrophobic fatty acyl chain region of the bilayer, inducing complete lipid disorder. The loss of membrane integrity is also reflected by membrane depolarisation and changes in membrane fluidity as shown by electron microscopy. Insertion of OCT into the outer and inner membrane of E. coli results in a chaotic lipid arrangement that leads to rapid disruption of the cell envelope. We propose that this unspecific mode of action based on purely physical interactions is the basis of the very broad antimicrobial profile and makes it unlikely that resistance to OCT will develop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2020.106146 | DOI Listing |
Pak J Med Sci
January 2025
Inzimam Ul Haq Postgraduate trainee, Department of ENT, MTI Khyber Teaching Hospital, University Road Peshawar, Pakistan.
Background & Objective: Chronic suppurative otitis media is a fatal condition owing to its propensity for intracranial extension. The inadvertent use of antibiotics has led to resistance among causative organisms. The objectives of this study were to determine causative bacteria, their antibiotic resistance and susceptibility patterns, and their response to antibiotics after a one-month follow-up.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon.
Introduction: Multidrug resistant (MDR) Gram-negative bacterial infections are considered a major public health threat. The objectives of this study were to describe the epidemiology, potential contributing factors, and antimicrobial resistance patterns associated with infections caused by MDR Gram-negative bacteria (GNB) in non-immunocompromised children and adolescents.
Methods: This was a retrospective observational study conducted at the American University of Beirut Medical Center (AUBMC) from 2009 to 2017.
Mater Today Bio
February 2025
Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
The rise of antibiotic resistance poses a significant and ongoing challenge to public health, with pathogenic bacteria remaining a persistent threat. Traditional culture methods, while considered the gold standard for bacterial detection and viability assessment, are time-consuming and labor-intensive. To address this limitation, we developed a novel point-of-care (POC) detection method leveraging citrate- and alkyne-modified gold nanorods (AuNRs) synthesized with click chemistry properties.
View Article and Find Full Text PDFF1000Res
January 2025
Department Medical Microbiology, Medical Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, East Kalimantan, 75119, Indonesia.
Background: The interaction between Streptococcus mutans (S. mutans) and Veillonella species (Veillonella spp.) is unclear.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Vascular Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China.
The gut bacteria not only play a crucial role in maintaining human health but also exhibit close associations with the occurrence of numerous diseases. Understanding the physiological and pathological functions of gut bacteria and enabling early diagnosis of gut diseases heavily relies on accurate knowledge about their in vivo distribution. Consequently, there is a significant demand for noninvasive imaging techniques capable of providing real-time localization information regarding gut bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!