Inhibition of neuronal Na currents by lacosamide: Differential binding affinity and kinetics to different inactivated states.

Neuropharmacology

Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:

Published: November 2020

Lacosamide is a new-generation anticonvulsant acting on Na channels. Compared to the classic anticonvulsants targeting Na channels, lacosamide is unique in structure and in its molecular action requiring longer membrane depolarization. Selective binding to the slow inactivated state of Na channels was then advocated for lacosamide, although slow binding to the fast inactivated state was alternatively proposed recently. In addition, quantitative characterization of lacosamide action has been deficient. We investigated the interactions between lacosamide and Na channels in native mammalian neurons, and found that the apparent dissociation constant (~13.7 μM) of lacosamide to the slow inactivated state is well within the therapeutic concentration range and is much (>15-fold) lower than the dissociation constant of lacosamide to the fast inactivated state. Besides, lacosamide has extremely slow binding rates (<400 Msec) to the fast but much faster binding rates (>3000 Msec) to the slow inactivated Na channels. Consistent with these biophysical characters, we further demonstrated that lacosamide is much more effective against the repetitive burst discharges with interburst intervals at -60 mV than -80 mV. With preponderant binding to the slow inactivation state in therapeutic concentrations and thus less propensity to affect normal discharges, lacosamide could be a drug of choice for seizure discharges characterized by relatively depolarized interburst intervals, during which more slow inactivated states could be generated and more binding of lacosamide would ensue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2020.108266DOI Listing

Publication Analysis

Top Keywords

slow inactivated
16
inactivated state
16
lacosamide
12
inactivated states
8
binding slow
8
lacosamide slow
8
slow binding
8
fast inactivated
8
dissociation constant
8
interburst intervals
8

Similar Publications

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

Head and Neck Paraganglioma in Pacak-Zhuang Syndrome.

JNCI Cancer Spectr

January 2025

Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.

Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.

View Article and Find Full Text PDF

The persistent Na current (I) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of I requires long-lasting voltage steps (>1 s), which will increase intracellular Na and activate the Na/K-ATPase pump current (I). Thus, I may contribute to the previously measured slow inactivation of I and the generation of the inspiratory bursting rhythm.

View Article and Find Full Text PDF

Super-refractory status epilepticus (SRSE) is defined as status epilepticus that persists or recurs after treatment with anesthetic agents for more than 24 hours, including cases with recurrent seizures on reduction or withdrawal of anesthetic drugs. Super-refractory status epilepticus presents a significant challenge for neurologists, particularly when standard treatments fail to achieve seizure control. Lacosamide, which has a unique mechanism involving modulating voltage-gated sodium channels by enhancing their slow inactivation, has emerged as a potential option for managing SRSE.

View Article and Find Full Text PDF

Elucidating the roles of voltage sensors in Na1.9 activation and inactivation through a spider toxin.

Biochim Biophys Acta Gen Subj

January 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China. Electronic address:

The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!