A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A nonbiodegradable scaffold-free cell sheet of genome-engineered mesenchymal stem cells inhibits development of acute kidney injury. | LitMetric

A nonbiodegradable scaffold-free cell sheet of genome-engineered mesenchymal stem cells inhibits development of acute kidney injury.

Kidney Int

Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea. Electronic address:

Published: January 2021

Cell therapy using genome-engineered stem cells has emerged as a novel strategy for the treatment of kidney diseases. By exploiting genome editing technology, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) secreting an angiogenic factors or an anti-inflammatory factor were generated for therapeutic application in acute kidney injury. Junction polymerase chain reaction analysis verified zinc finger nucleases-assisted integration of the desired gene into the hUC-MSCs. Flow cytometry and differentiation assays indicated that genome editing did not affect the differentiation potential of these mesenchymal stem cells. Protein measurement in conditioned media with the use of ELISA and immunoblotting revealed the production and secretion of each integrated gene product. For cell therapy in the bilateral ischemia-reperfusion mouse model of acute kidney injury, our innovative scaffold-free cell sheets were established using a non-biodegradable temperature-responsive polymer. One of each type of scaffold-free cell sheets of either the angiogenic factor vascular endothelial grown factor or angiopoietin-1, or the anti-inflammatory factor erythropoietin, or α-melanocyte-stimulating hormone-secreting hUC-MSCs was applied to the decapsulated kidney surface. This resulted in significant amelioration of kidney dysfunction in the mice with acute kidney injury, effects that were superior to intravenous administration of the same genome-engineered hUC-MSCs. Thus, our scaffold-free cell sheets of genome-engineered mesenchymal stem cells provides therapeutic effects by inhibiting acute kidney injury via angiogenesis or anti-inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.07.043DOI Listing

Publication Analysis

Top Keywords

stem cells
20
acute kidney
20
kidney injury
20
scaffold-free cell
16
mesenchymal stem
16
cell sheets
12
genome-engineered mesenchymal
8
kidney
8
cell therapy
8
genome editing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!