Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While navigating the world, we pick up on patterns of where things tend to appear. According to theories of memory and studies of animal behavior, knowledge of these patterns emerges gradually over days or weeks via consolidation of individual navigation episodes. Here, we discovered that navigation patterns can also be extracted on-line, prior to the opportunity for off-line consolidation, as a result of rapid statistical learning. Thirty human participants navigated a virtual water maze in which platform locations were drawn from a spatial distribution. Within a single session, participants increasingly navigated through the mean of the distribution. This behavior was better simulated by random walks from a model that had only an explicit representation of the current mean, compared with a model that had only memory for the individual platform locations. These results suggest that participants rapidly summarized the underlying spatial distribution and used this statistical knowledge to guide future navigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542246 | PMC |
http://dx.doi.org/10.1177/0956797620948828 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!