Body image disorders in anorexia nervosa (AN) patients and recovered AN (RAN) patients have been suggested to stem from aberrant integration of sensory information. Previous research by Case et al. (2012) used the size-weight illusion (SWI) to study multisensory integration in AN. Their results showed a diminished SWI in AN patients, which they interpreted as evidence of decreased integration of visual and proprioceptive information. However, their method did not distinguish between visual and haptic size information, which was presented concurrently while making weight judgements. Therefore, the reported effect might be attributed to integrating visual, haptic size cues, or a combination of both processes with proprioceptive input. Here, we use the SWI to investigate the integration of visual and haptic object-related sensory information in a sample of AN patients (n = 30), RAN patients (n = 29) and healthy controls (HC) (n = 29). We aimed to distinguish the contribution of visual and haptic object size by including separate visual and haptic SWI conditions. In addition to explicit measures, we included grip force measurements to assess implicit expectations about object weight. We further analysed the correlation between the SWI and a visual body size estimation (VSE) task. In contrast to Case et al. (2012), we found no evidence of differential SWI experience between groups. All participants reported a stronger visual SWI compared to haptic SWI. Grip force rate (but not peak) showed evidence of motor adaptation for the larger object in the visual condition. Furthermore, there was no correlation between the VSE and SWI, indicating no relation between perceived object weight and body size estimation. These results do not support the hypothesised impairment of visual-haptic object related integration in AN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451544 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237421 | PLOS |
Perception
January 2025
Vrije Universiteit Amsterdam, The Netherlands.
Perceiving the size of a visual object requires the combination of various sources of visual information. A recent paper by Kim et al. (Body Orientation Affects the Perceived Size of Objects.
View Article and Find Full Text PDFPurpose: To evaluate dynamic changes in ciliary parameters and Implantable Collamer Lens V4C (ICL) (STAAR Surgical) haptic position using mydriatic and miotic agents and their effects on the central and peripheral vault.
Methods: This study involved 80 eyes from 40 consecutive patients (mean age: 28.05 years; range: 19 to 42 years) examined 3 months after ICL implantation.
Sensors (Basel)
December 2024
Department of Industrial Design, Guangdong University of Technology, Guangzhou 510006, China.
Research into new solutions for wearable assistive devices for the visually impaired is an important area of assistive technology (AT). This plays a crucial role in improving the functionality and independence of the visually impaired, helping them to participate fully in their daily lives and in various community activities. This study presents a bibliometric analysis of the literature published over the last decade on wearable assistive devices for the visually impaired, retrieved from the Web of Science Core Collection (WoSCC) using CiteSpace, to provide an overview of the current state of research, trends, and hotspots in the field.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.
The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.
View Article and Find Full Text PDFFront Robot AI
December 2024
Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!