A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale Chemical Features of the Natural Fibrous Material Wood. | LitMetric

Nanoscale Chemical Features of the Natural Fibrous Material Wood.

Biomacromolecules

Institute of Wood Technology and Renewable Materials, Department of Materials Sciences and Process Engineering, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.

Published: October 2020

Peak force infrared (PFIR) microscopy is a recently developed approach to acquire multiple chemical and physical material properties simultaneously and with nanometer resolution: topographical features, infrared (IR)-sensitive maps, adhesion, stiffness, and locally resolved IR spectra. This multifunctional mapping is enabled by the ability of an atomic force microscope tip in the peak force tapping mode to detect photothermal expansion of the sample. We report the use of the PFIR to characterize the chemical modification of bio-based native and intact wooden matrices, which has evolved into an increasingly active research field. The distribution of functional groups of wood cellulose aggregates, either in native or carboxylated states, was detected with a remarkable spatial resolution of 16 nm. Furthermore, mechanical and chemical maps of the distinct cell wall layers were obtained on polymerized wooden matrices to localize the exact position of the modified regions. These findings shall support the development and understanding of functionalized wood materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556540PMC
http://dx.doi.org/10.1021/acs.biomac.0c01028DOI Listing

Publication Analysis

Top Keywords

peak force
8
wooden matrices
8
nanoscale chemical
4
chemical features
4
features natural
4
natural fibrous
4
fibrous material
4
material wood
4
wood peak
4
force infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!