Introduction: Access to public subspecialty healthcare is limited in underserved areas of Brazil, including echocardiography (echo). Long waiting lines and lack of a prioritisation system lead to diagnostic lag and may contribute to poor outcomes. We developed a prioritisation tool for use in primary care, aimed at improving resource utilisation, by predicting those at highest risk of having an abnormal echo, and thus in highest need of referral.

Methods: All patients in the existing primary care waiting list for echo were invited for participation and underwent a clinical questionnaire, simplified 7-view echo screening by non-physicians with handheld devices, and standard echo by experts. Two derivation models were developed, one including only clinical variables and a second including clinical variables and findings of major heart disease (HD) on echo screening (cut point for high/low-risk). For validation, patients were risk-classified according to the clinical score. High-risk patients and a sample of low-risk underwent standard echo. Intermediate-risk patients first had screening echo, with a standard echo if HD was suspected. Discrimination and calibration of the two models were assessed to predict HD in standard echo.

Results: In derivation (N = 603), clinical variables associated with HD were female gender, body mass index, Chagas disease, prior cardiac surgery, coronary disease, valve disease, hypertension and heart failure, and this model was well calibrated with C-statistic = 0.781. Performance was improved with the addition of echo screening, with C-statistic = 0.871 after cross-validation. For validation (N = 1526), 227 (14.9%) patients were classified as low risk, 1082 (70.9%) as intermediate risk and 217 (14.2%) as high risk by the clinical model. The final model with two categories had high sensitivity (99%) and negative predictive value (97%) for HD in standard echo. Model performance was good with C-statistic = 0.720.

Conclusion: The addition of screening echo to clinical variables significantly improves the performance of a score to predict major HD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijcp.13686DOI Listing

Publication Analysis

Top Keywords

standard echo
16
clinical variables
16
primary care
12
echo
12
echo screening
12
clinical
8
including clinical
8
screening echo
8
screening
6
model
5

Similar Publications

Background: MRI offers quantification of proton density fat fraction (PDFF) and tissue characteristics with T1 mapping. The influence of age, sex, and the potential confounding effects of fat on T1 values in skeletal muscle in healthy adults are insufficiently known.

Purpose: To determine the accuracy and repeatability of a saturation-recovery chemical-shift encoded multiparametric approach (SR-CSE) for quantification of T1 and muscle fat content, and establish normative values (age, sex) from a healthy cohort.

View Article and Find Full Text PDF

Purpose: In primary central nervous system lymphoma (PCNSL), B-cell lymphoma-6 (BCL-6) is an unfavorable prognostic biomarker. We aim to non-invasively detect BCL-6 overexpression in PCNSL patients using multiparametric MRI and machine learning techniques.

Methods: 65 patients (101 lesions) with primary central nervous system lymphoma (PCNSL) diagnosed from January 2013 to July 2023, and all patients were randomly divided into a training set and a validation set according to a ratio of 8 to 2.

View Article and Find Full Text PDF

Breath-hold T2-weighted half-Fourier acquisition single-shot turbo spin echo (HASTE) magnetic resonance imaging (MRI) of the upper abdomen with a slice thickness below 5 mm suffers from high image noise and blurring. The purpose of this prospective study was to improve image quality and accelerate imaging acquisition by using single-breath-hold T2-weighted HASTE with deep learning (DL) reconstruction (DL-HASTE) with a 3 mm slice thickness. MRI of the upper abdomen with DL-HASTE was performed in 35 participants (5 healthy volunteers and 30 patients) at 3 Tesla.

View Article and Find Full Text PDF

Purpose: In this study, we aimed to evaluate the association between the Extension for Community Healthcare Outcomes-Palliative Care (ECHO-PC; ECHO Model-Based comprehensive educational and telementoring intervention) for health care professionals (HCPs) and change in patient-reported quality-of-life (QOL; Functional Assessment of Cancer Therapy-General [FACT-G]) among patients with advanced cancer. We also examined the association between ECHO-PC and changes in symptom distress (Edmonton Symptom Assessment Scale [ESAS]), patient experience and satisfaction, and caregiver distress scores.

Methods: ECHO-PC Clinic sessions were conducted twice a month for 1 year by an interdisciplinary team of PC clinicians at the MD Anderson Cancer Center, with participation of experts in PC in sub-Saharan Africa, using standardized curriculum on the basis of PC needs in the region.

View Article and Find Full Text PDF

Background: Computed tomography (CT) is the gold standard imaging modality for the assessment of 3D bony morphology but incurs the cost of ionizing radiation exposure. High-resolution 3D magnetic resonance imaging (MRI) with CT-like bone contrast (CLBC) may provide an alternative to CT in allowing complete evaluation of both bony and soft tissue structures with a single MRI examination.

Purpose: To review the technical aspects of an optimized stack-of-stars 3D gradient recalled echo pulse sequence method (3D-Bone) in generating 3D MR images with CLBC, and to present a pictorial review of the utility of 3D-Bone in the clinical assessment of common musculoskeletal conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!