Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cells offers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426639PMC
http://dx.doi.org/10.3389/fbioe.2020.00942DOI Listing

Publication Analysis

Top Keywords

synthetic biology
8
computer-aided whole-cell
4
design
4
whole-cell design
4
design holistic
4
holistic approach
4
approach integrating
4
integrating synthetic
4
synthetic systems
4
biology
4

Similar Publications

Protocol for the purification of the plastid-encoded RNA polymerase from transplastomic tobacco plants.

STAR Protoc

January 2025

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.

View Article and Find Full Text PDF

[Characteristics of immune response induced by mucosal immunization with recombinant adenovirus of Mycobacterium tuberculosis phosphodiesterase].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:

Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).

View Article and Find Full Text PDF

Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets.

View Article and Find Full Text PDF

Controlling microbial pollutants is a significant public health concern as they cause several chronic microbial infections and illnesses. In recent years, essential oils (EOs) have become intriguing alternatives for synthetic antimicrobials due to their biodegradability, natural source extraction, and strong antibacterial properties. The bactericidal properties of alginate containing lemon essential oil were examined in this investigation.

View Article and Find Full Text PDF

Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!