The high viscosities/yield stresses of lignocellulose slurries makes their industrial processing a significant challenge. However, little is known regarding the degree to which liquefaction and its enzymatic requirements are specific to a substrate's physicochemical and rheological properties. In the work reported here, the substrate- and rheological regime-specificities of liquefaction of various substrates were assessed using real-time in-rheometer viscometry and offline oscillatory rheometry when hydrolyzed by combinations of cellobiohydrolase ( Cel7A), endoglucanase ( Cel45A), glycoside hydrolase (GH) family 10 xylanase, and GH family 11 xylanase. In contrast to previous work that has suggested that endoglucanase activity dominates enzymatic liquefaction, all of the enzymes were shown to have at least some liquefaction capacity depending on the substrate and reaction conditions. The contribution of individual enzymes was found to be influenced by the rheological regime; in the concentrated regime, the cellobiohydrolase outperformed the endoglucanase, achieving 2.4-fold higher yield stress reduction over the same timeframe, whereas the endoglucanase performed best in the semi-dilute regime. It was apparent that the significant differences in rheology and liquefaction mechanisms made it difficult to predict the liquefaction capacity of an enzyme or enzyme cocktail at different substrate concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423843 | PMC |
http://dx.doi.org/10.3389/fbioe.2020.00917 | DOI Listing |
J Chem Phys
January 2025
Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic.
The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi 10326, Korea.
This study investigated the rheological and tribological properties of cold beverages [bottled water (BW), sports drink (SD), orange juice (OJ), and whole milk (WM)] thickened with various concentrations (1%, 2%, and 3%, w/w) of xanthan gum-based food thickeners. All thickened beverages exhibited high pseudoplastic behavior, with increasing thickener concentration leading to higher viscosity and viscoelastic moduli and a lower flow behavior index. Thickened BW, SD, and WM exhibited typical Stribeck curves covering the boundary, mixed, and hydrodynamic lubrication regimes.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.
J Colloid Interface Sci
December 2024
Dept. of Engineering, University of Campania Luigi Vanvitelli, Real Casa dell'Annunziata, via Roma 29, 81031 Aversa, CE, Italy. Electronic address:
Hypothesis: The porosity affects the rheological response of porous particle suspensions.
Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.
Microsc Res Tech
December 2024
Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia.
To evaluate the SBS, DC, and rheological valuation of experimental 1 wt % Cur-loaded-HNPs orthodontic adhesive to bond bracket to enamel surface treated with PA; Nd: YAG, and Er: Cr, YSGG lasers. Two adhesives were prepared experimental adhesive (EA) and EA loaded with 1-wt % Cur-HNP. Surface characterization of Cur-loaded HNP was performed under SEM along with EDS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!