Multiple strategies may be used when counteracting loss of balance during walking. Placing the foot onto a new location is not efficient when walking speed is very low. Instead medio-lateral displacement of center-of-pressure, rotation of body segments to produce a lateral ground-reaction-force, and pronounced braking of movement in the plane of progression is used. It is, however, presently not known in what way these in-stance balancing strategies are interrelated. Twelve healthy subjects walked very slowly on an instrumented treadmill and received outward-directed pushes to the waist. We created experimental conditions where the use of stepping strategy to recover balance following an outward push was minimized by appropriately selecting the amplitude and timing of perturbation. Our experimental results showed that in the first part of the response the principal strategy used to counteract the effect of a perturbing push was a short but substantial increase in lateral ground-reaction-force. Concomitant slowing of the movement and related anterior displacement of center-of-pressure enabled lateral displacement of center-of-pressure which was, together with a short but substantial increase in vertical ground-reaction-force, instrumental in reducing the inevitable increase of whole-body angular momentum in the frontal plane. However, anterior displacement of center-of-pressure and increased vertical ground-reaction-force also induced an increase in whole-body angular momentum in the sagittal plane. In the second part of the response the lateral ground-reaction-force was decreased with respect to unperturbed walking thus allowing for a decrease of whole-body angular momentum in the frontal plane. Additionally, an increase in anterior ground-reaction-force in the second part of the response propelled the center-of-mass in the direction of movement, thus re-synchronizing it with the frontal plane component of the center-of-mass as well as decreasing whole-body angular momentum in the sagittal plane. The results of this study show that use of in-stance balancing strategies counteracts the effect a perturbing push imposed on the center-of-mass, re-synchronizes the movement of center-of-mass in sagittal and frontal planes to the values seen in unperturbed walking and maintains control of whole-body angular momentum in both frontal and sagittal planes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399078PMC
http://dx.doi.org/10.3389/fbioe.2020.00884DOI Listing

Publication Analysis

Top Keywords

whole-body angular
20
angular momentum
20
displacement center-of-pressure
16
in-stance balancing
12
lateral ground-reaction-force
12
momentum frontal
12
frontal plane
12
balancing strategies
8
perturbing push
8
short substantial
8

Similar Publications

Given the higher fall risk and the fatal sequelae of falls on stairs, it is worthwhile to investigate the mechanism of dynamic balance control in individuals with knee osteoarthritis during stair negotiation. Whole-body angular momentum ([Formula: see text]) is widely used as a surrogate to reflect dynamic balance and failure to constrain [Formula: see text] may increase the fall risk. This study aimed to compare the range of [Formula: see text] between people with and without knee osteoarthritis during stair ascent and descent.

View Article and Find Full Text PDF

Identifying measures which accurately quantify reactive balance adaptation during walking is essential to understand how emerging perturbation-based gait paradigms impact stability over the course of an intervention. These perturbation paradigms have shown promise in reducing falls for numerous clinical populations, however tracking progress in objective terms throughout an intervention remains challenging. Whole body angular momentum (H) may be particularly suited to detect subtle adaptations in the reactive balance response and is applicable within numerous perturbation environments.

View Article and Find Full Text PDF

Background: High ankle motion smoothness involves small acceleration or deceleration, which is related to ankle stability. Interventions for ankle motion smoothness are important to reduce the progression of chronic ankle instability (CAI) symptoms and prevent recurrent ankle sprains. Training using whole-body vibration (WBV) may easily and effectively improve ankle motion smoothness; however, its effects have not yet been investigated.

View Article and Find Full Text PDF

In recent post-mortem human subjects (PMHS) studies in a high-speed rear-facing frontal impact (HSRFFI), the PMHS sustained multiple rib fractures. The seatback structure and properties of the seats might contribute to these fractures. This study aimed to determine if a homogeneous rear-facing seat with foam-covered seatback would mitigate the risk of thoracic injury during an HSRFFI.

View Article and Find Full Text PDF

The back handspring step out (BHS) is a foundational skill in gymnastics balance beam routines that requires the generation of significant sagittal plane angular momentum while tightly regulating frontal plane momentum to control their balance. However, which body segments are critical for generating this momentum and successfully performing the BHS and whether skill level influences this generation remains unknown. Twenty-five gymnasts with a range of skill levels performed a BHS on a balance beam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!