The photochemistry and photostability of a potential ultraviolet (UV) radiation filter, dehydrodiethylsinapate, with a broad absorption in the UVA region, is explored utilizing a combination of femtosecond time-resolved spectroscopy and steady-state irradiation studies. The time-resolved measurements show that this UV filter candidate undergoes excited state relaxation after UV absorption on a timescale of ~10 picoseconds, suggesting efficient relaxation. However, steady-state irradiation measurements show degradation under prolonged UV exposure. From a photochemical standpoint, this highlights the importance of considering both the ultrafast and "ultraslow" timescales when designing new potential UV filters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399488PMC
http://dx.doi.org/10.3389/fchem.2020.00633DOI Listing

Publication Analysis

Top Keywords

steady-state irradiation
8
exploring photochemistry
4
photochemistry ethyl
4
ethyl sinapate
4
sinapate dimer
4
dimer attempt
4
attempt better
4
better ultraviolet
4
ultraviolet filter
4
filter photochemistry
4

Similar Publications

Photovoltaic (PV) modules may encounter nonuniform situations that reduce their useable power volume, causing ineffective maximum power point tracking (MPPT). Moreover, due to the incorporation of bypass diodes, power-voltage (P-V) graph has multi-peaks when each component of the module receives different solar irradiation. This paper proposes a solution to this problem using an arithmetic optimization algorithm (AOA) for MPPT in PV systems operating in nonuniform situations.

View Article and Find Full Text PDF

The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques.

View Article and Find Full Text PDF

. To study the effect of dose-rate in the time evolution of chemical yields produced in pure water versus a cellular-like environment for FLASH radiotherapy research.A version of TOPAS-nBio with Tau-Leaping algorithm was used to simulate the homogenous chemistry stage of water radiolysis using three chemical models: (1) liquid water model that considered scavenging of, Hby dissolved oxygen; (2) Michaels & Hunt model that considered scavenging ofOH,, and Hby biomolecules existing in cellular environment; (3) Wardman model that considered model 2) and the non-enzymatic antioxidant glutathione (GSH).

View Article and Find Full Text PDF

Oxygen adsorption and activation control the photochemical activity of common iron oxyhydroxide polymorphs in mediating oxytetracycline degradation under visible light.

J Colloid Interface Sci

April 2025

MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

The natural minerals with semiconducting properties possess photochemical activity through generating reactive oxygen species (ROSs) and affect the fate of adsorbed organic pollutants. Iron oxyhydroxides occur in different polymorphic structures under various geological and climatic conditions in natural environment. However, the difference in their photoactivity has not been well understood.

View Article and Find Full Text PDF

Inducing immunogenic cell death (ICD) is a promising approach to elicit enduring antitumor immune responses. Hence, extensive efforts are being made to develop ICD inducers. Herein, a cascaded dual-atom nanozyme with Fe and Cu sites (FeCu-DA) as an efficient ICD inducer is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!