Development of vaccines for SARS-CoV-2.

F1000Res

Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Queensland, Australia.

Published: September 2020

COVID-19 emerged in late 2019 and has rapidly spread through many countries globally. The causative SARS-CoV-2 virus was not known until recently, and there is little or no natural immunity in human populations. There is an urgent need for vaccines and drugs to combat this new pandemic. In just a few months, huge efforts and resources by government, academia, and industry have been thrown into the race to develop a vaccine. This brief review summarizes and discusses the array of technologies being applied to vaccine development, highlighting the strengths and weaknesses of the various approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431966PMC
http://dx.doi.org/10.12688/f1000research.25998.1DOI Listing

Publication Analysis

Top Keywords

development vaccines
4
vaccines sars-cov-2
4
sars-cov-2 covid-19
4
covid-19 emerged
4
emerged late
4
late 2019
4
2019 rapidly
4
rapidly spread
4
spread countries
4
countries globally
4

Similar Publications

Introduction: Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are prevalent in over 80 countries or territories worldwide, causing hundreds of thousands of cases annually. But currently there is a lack of specific antiviral agents and effective vaccines.

Methods: In the present study, to identify human neutralizing monoclonal antibody (mAb) against JEV or/and ZIKV, we isolated ZIKV-E protein-binding B cells from the peripheral venous blood of a healthy volunteer who had received the JEV live-attenuated vaccine and performed 10× Genomics transcriptome sequencing and BCR sequencing analysis, we then obtained the V region amino acid sequences of a novel mAb LZY3412.

View Article and Find Full Text PDF

Background: Infectious disease agents pose significant threats to humans, wildlife, and livestock, with rodents carrying a third of these agents, many linked to human diseases. However, the range of pathogens in rodents and the hotspots for disease remain poorly understood.

Aim: This study evaluated the prevalence of viral, bacterial, and parasitic pathogens in rodents in riverine and non-riverine areas in selected districts in Zambia.

View Article and Find Full Text PDF

Unlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use.

View Article and Find Full Text PDF

Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!