Plant-associated microbiota plays an important role in plant disease resistance. Bacterial wilt resistance of tomato is a function of the quantitative trait of tomato plants; however, the mechanism underlying quantitative resistance is unexplored. In this study, we hypothesized that rhizosphere microbiota affects the resistance of tomato plants against soil-borne bacterial wilt caused by . This hypothesis was tested using a tomato cultivar grown in a defined soil with various microbiota transplants. The bacterial wilt-resistant Hawaii 7996 tomato cultivar exhibited marked suppression and induction of disease severity after treatment with upland soil-derived and forest soil-derived microbiotas, respectively, whereas the transplants did not affect the disease severity in the susceptible tomato cultivar Moneymaker. The differential resistance of Hawaii 7996 to bacterial wilt was abolished by diluted or heat-killed microbiota transplantation. Microbial community analysis revealed the transplant-specific distinct community structure in the tomato rhizosphere and the significant enrichment of specific microbial operational taxonomic units (OTUs) in the rhizosphere of the upland soil microbiota-treated Hawaii 7996. These results suggest that the specific transplanted microbiota alters the bacterial wilt resistance in the resistant cultivar potentially through a priority effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427413PMC
http://dx.doi.org/10.3389/fpls.2020.01186DOI Listing

Publication Analysis

Top Keywords

bacterial wilt
20
wilt resistance
12
resistance tomato
12
tomato cultivar
12
hawaii 7996
12
tomato
8
tomato plants
8
disease severity
8
resistance
7
microbiota
6

Similar Publications

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts.

View Article and Find Full Text PDF

Biocontrol microbes are environment friendly and safe for humans and animals. To seek biocontrol microbes effective in suppressing is important for tomato production. is a soil-borne pathogen capable of causing wilt in numerous plant species.

View Article and Find Full Text PDF

strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.

View Article and Find Full Text PDF

Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions.

View Article and Find Full Text PDF

The soilborne pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is currently devastating banana production worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!