Hematopoietic stem cells (HSCs) provide all types of blood cells during the entire life of the organism. HSCs are mainly quiescent and can eventually enter the cell cycle to differentiate. HSCs are maintained and tightly regulated in a particular environment. The stem cell niche regulates dormancy and awakening. Deregulations of this interplay can lead to hematopoietic failure and diseases. In this paper, we present a Boolean network model that recapitulates HSC regulation in virtue of external signals coming from the niche. This Boolean network integrates and summarizes the current knowledge of HSC regulation and is based on extensive literature research. Furthermore, dynamic simulations suggest a novel systemic regulation of TP53 in homeostasis. Thereby, our model indicates that TP53 activity is balanced depending on external stimulations, engaging a regulatory mechanism involving ROS regulators and RAS activated transcription factors. Finally, we investigated different mouse models and compared them to knockout simulations. Here, the model could recapitulate observed behaviors and thus sustains our results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411231 | PMC |
http://dx.doi.org/10.3389/fphys.2020.00848 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, China.
Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.
View Article and Find Full Text PDFNuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, exhibits a complex role in cancer biology. Genetic mutations in the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 system, which lead to NRF2 hyperactivation, are found in 20% to 30% of lung cancer cases. This review explores the intricate interplay between NRF2 and key oncogenic pathways in lung cancer, focusing on the interaction of KEAP1/NRF2 system with Kirsten rat sarcoma virus (KRAS), tumor protein P53 (TP53), epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinases (PI3K)/AKT signaling.
View Article and Find Full Text PDFCommun Biol
January 2025
The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
Angiogenesis is a significant character of lung adenocarcinoma (LUAD) and is an important reason leading to high mortality rates of LUAD patients. However, the molecular mechanisms of lncRNAs regulating the angiogenesis in LUAD have not been fully elucidated. Here we show lncRNA chromatin-associated RNA 10 (CAR10) was upregulated in the tumor tissue of patients with LUAD and enhanced tumor metastasis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Vulvar cancer is a rare gynaecological disease that can be caused by infection with human papillomavirus (HPV). The mutational frequencies and landscape for HPV-associated and HPV-independent vulvar tumor development are supposedly two distinctly different pathways and more detailed knowledge on target biological mechanisms for individualized future treatments is needed. The study included formalin-fixed paraffin-embedded (FFPE) samples from 32 cancer patients (16 HPV-negative and 16 HPV-associated), treated in Örebro, Sweden from 1988 to 2008.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical College of YiChun University, Xuefu Road No 576, Yichun, 336000, Jiangxi, People's Republic of China.
Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!