AI Article Synopsis

  • Local administration of opioid agonists can help reduce inflammatory pain, but their effectiveness against nerve injury-related pain (like mechanical allodynia and hyperalgesia) is less studied.
  • In this study, researchers investigated the role of delta opioid receptors (DORs) on C-fiber nociceptors in a mouse model of neuropathic pain induced by nerve injury.
  • The results showed that the DOR agonist deltorphin II significantly inhibited the mechanical responsiveness of nociceptors in neuropathic pain conditions, highlighting the potential for DORs as therapeutic targets for managing nerve injury-related pain.

Article Abstract

Clinical and preclinical studies have revealed that local administration of opioid agonists into peripheral tissue attenuates inflammatory pain. However, few studies have examined whether peripherally restricted opioids are effective in reducing mechanical allodynia and hyperalgesia that usually follows nerve injury. The aim of the present study was to determine whether the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic pain conditions is depressed by direct activation of delta opioid receptors (DORs) on their peripheral terminals. A murine model of peripheral neuropathic pain was induced with a spared nerve (tibial) injury, in which mice survived 7 or 28 days after surgery before electrophysiological testing began. Control groups comprised naïve and sham-operated animals. An ex vivo preparation of mouse plantar skin with attached tibial nerve was used to examine electrophysiologically the effects of the selective DOR agonist, deltorphin II, on the response properties of individual cutaneous C-fiber nociceptors. In contrast to naïve and sham-operated animals, deltorphin II induced an inhibition of the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic conditions. The effects of deltorphin II were concentration-dependent and prevented by pretreatment with naltrindole indicating DOR-mediated inhibitory effects of deltorphin II. Our results provide the first direct evidence for expression of functional DORs on mechanical nociceptors innervating skin in an animal model of neuropathic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411131PMC
http://dx.doi.org/10.3389/fphar.2020.01151DOI Listing

Publication Analysis

Top Keywords

mechanical nociceptors
12
nociceptors innervating
12
innervating skin
12
neuropathic pain
12
nerve injury
8
mechanical responsiveness
8
responsiveness c-fiber
8
c-fiber mechanical
8
skin neuropathic
8
naïve sham-operated
8

Similar Publications

Hyperalgesic priming is a model system that has been widely used to understand plasticity in painful stimulus-detecting sensory neurons, called nociceptors. A key feature of this model system is that following priming, stimuli that do not normally cause hyperalgesia now readily provoke this state. We hypothesized that hyperalgesic priming occurs because of reorganization of translation of mRNA in nociceptors.

View Article and Find Full Text PDF

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the ' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Multiple mechanisms of action for an extremely painful venom.

Curr Biol

January 2025

Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:

Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream.

View Article and Find Full Text PDF

Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. Recent studies have suggested that external or intrinsic trauma to the temporomandibular joint (TMJ) is associated with the onset of painful TMD in patients. Here, we investigated the effects of TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors in both sexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!