Background: The potential for hepatotoxicity during isoniazid-based tuberculosis (TB) treatment presents a major challenge for TB control programs worldwide. We sought to determine whether pharmacokinetic exposures of isoniazid and its metabolites were related to cellular oxidation/reduction status and downstream markers of oxidative DNA damage.

Methods: We performed intensive pharmacokinetic sampling among isoniazid-treated patients to determine the relative plasma exposures of isoniazid, acetylisoniazid, hydrazine, and acetylhydrazine. Physiologically-based pharmacokinetic modeling was used to estimate liver tissue exposures during a 24-h dosing interval for each compound. We experimentally treated HepG2 cells with isoniazid and metabolites at equimolar concentrations corresponding to these exposures for 7, 14, and 28-day periods, and performed assays related to redox imbalance and oxidative DNA damage at each timepoint. We related a urine marker of oxidative DNA damage to serum isoniazid pharmacokinetic exposures and pharmacogenetics in a clinical study.

Results: Among isoniazid-treated patients, serum concentrations of hydrazine and isoniazid concentrations were highly correlated. At equimolar concentrations that approximated hepatic tissue exposures during a 24-h dosing interval, hydrazine demonstrated the highest levels of redox imbalance, mitochondrial injury, and oxidative DNA damage over a 28-day treatment period. In a clinical validation study of isoniazid-treated TB patients, peak isoniazid serum concentrations were positively associated with a urine biomarker of oxidative DNA damage.

Conclusions: Isoniazid and its metabolites share the potential for oxidative cellular damage, with the greatest effects observed for hydrazine. Future studies should investigate the clinical consequences of oxidative stress with regards to clinical episodes of drug induced liver injury during isoniazid treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406860PMC
http://dx.doi.org/10.3389/fphar.2020.01103DOI Listing

Publication Analysis

Top Keywords

oxidative dna
24
dna damage
16
redox imbalance
12
isoniazid metabolites
12
isoniazid-treated patients
12
isoniazid
9
oxidative
8
imbalance oxidative
8
isoniazid treatment
8
pharmacokinetic exposures
8

Similar Publications

Dysfunctional copper homeostasis in affects genomic and neuronal stability.

Redox Biochem Chem

December 2024

Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.

While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.

View Article and Find Full Text PDF

Regular exercise is widely recognized for its numerous physical and mental benefits, but its effects on male reproductive health are less understood. This review aims to summarize the current evidence on the impact of exercise on male reproduction, including reproductive hormone regulation, spermatogenesis sperm quality, and fertility. Moderate exercise improves sperm quality, increasing count, motility, and morphology, while excessive and severe exercise may have detrimental effects.

View Article and Find Full Text PDF

Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.

J Appl Physiol (1985)

December 2024

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.

Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.

View Article and Find Full Text PDF

Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.

View Article and Find Full Text PDF

Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching.

Mikrochim Acta

December 2024

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.

A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!