Familial Alzheimer's Disease (FAD) caused by Presenilin-1 (PS1) mutations is characterized by early onset, cognitive impairment, and dementia. Impaired gamma secretase function favors production of longer beta-amyloid species in PS1 FAD. The PS1 E280A mutation is the largest FAD kindred under study. Here, we studied beta-amyloid deposits in PS1 E280A FAD brains in comparison to sporadic Alzheimer's disease (SAD). We analyzed cortices and cerebellum from 10 FAD and 10 SAD brains using immunohistochemistry to determine total beta-amyloid, hyperphosphorylated tau (pTau), and specific beta-amyloid peptides 1-38, 1-40, 1-42, and 1-43. Additionally, we studied beta-amyloid subspecies by ELISA, and vessel pathology was detected with beta-amyloid 1-42 and truncated pyroglutamylated beta-amyloid antibodies. There were no significant differences in total beta-amyloid signal between SAD and FAD. Beta-amyloid 1-38 and 1-43 loads were increased, and 1-42 loads were decreased in frontal cortices of SAD when compared to FAD. Beta-amyloid species assessment by ELISA resembled our findings by immunohistochemical analysis. Differences in beta-amyloid 1-38 and 1-42 levels between SAD and FAD were evidenced by using beta-amyloid length-specific antibodies, reflecting a gamma secretase-dependent shift in beta-amyloid processing in FAD cases. The use of beta-amyloid length-specific antibodies for postmortem assessment of beta-amyloid pathology can differentiate between SAD and PS1 FAD cases and it can be useful for identification of SAD cases potentially affected with gamma secretase dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399638PMC
http://dx.doi.org/10.3389/fnagi.2020.00220DOI Listing

Publication Analysis

Top Keywords

beta-amyloid
17
beta-amyloid 1-38
12
alzheimer's disease
12
fad
10
deposition beta-amyloid
8
beta-amyloid 1-42
8
familial alzheimer's
8
gamma secretase
8
beta-amyloid species
8
ps1 fad
8

Similar Publications

Cognitive variation reflects amyloid, tau, and neurodegenerative biomarkers in Alzheimer's disease.

Geroscience

January 2025

Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.

In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is an irreversible age-related neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Di Huang Yi Zhi (DHYZ) formula, a traditional Chinese herbal compound comprising several prescriptions, demonstrates properties that improve cognitive abilities in clinical. Nonetheless, its molecular mechanisms on treating AD through improving neuron cells mitochondria function have not been deeply investigated.

View Article and Find Full Text PDF

Mapping of Amyloid-β Aggregates In Vivo by a Fluorescent Probe with Dual Recognition Moieties.

Anal Chem

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

The spontaneous aggregation of amyloid-β (Aβ) leads to neuronal cell death in the brain and causes the development of Alzheimer's disease (AD). The efficient detection of the aggregation state of Aβ holds significant promise for the early diagnosis and subsequent treatment of this neurodegenerative disorder. Currently, most of the fluorescent probes used for the detection of Aβ fibrils share similar recognition moieties, such as the ,-dimethylamino group, ,-diethylamino group, and piperidyl group.

View Article and Find Full Text PDF

Roles of C/EBPβ/AEP in Neurodegenerative Diseases.

Curr Top Med Chem

January 2025

Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.

In recent years, an increasing number of studies have shown that increased activation of aspartic endopeptidases (AEPs) is a common symptom in neurodegenerative diseases (NDDs). AEP cleaves amyloid precursor protein (APP), tau (microtubule-associated protein tau), α- synuclein (α-syn), SET (a 39-KDa phosphoprotein widely expressed in various tissues and localizes predominantly in the nucleus), and TAR DNA-binding protein 43 (TDP-43), and promotes their aggregation, contributing to Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) pathogenesis. Abundant evidence supports the notion that CCAAT/enhancer-binding protein β (C/EBPβ)/AEP may play an important role in NDDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!