The specific intrinsic network coupling abnormalities in mild traumatic brain injury (mTBI) patients are poorly understood. Our objective is to compare the correlations among the default mode, salience, and central executive networks in patients with mTBI and healthy controls. This 2-year prospective study included 32 acute mTBI patients and 37 healthy comparisons. We calculated the functional connectivity scores among the default mode, salience, and central executive networks. Then we conducted multilevel correlation analysis to investigate component correlations, global graph, and local functional connectivity changes. Patients with mTBI showed significant increased functional connectivity between the anterior part of the default mode network and the salience network compared with controls ( = 0.013, false discovery rate correction). Hyper-connectivity between the default mode and salience network was significantly positively correlated with the dimensional change card sort score in patients with mTBI ( = 0.40, = 0.037). The average path length of mTBI patients was significantly higher than that of controls ( = 0.028). Aberrant functional coupling between the default mode and salience networks were identified in acute mTBI patients. Our finding has great potential to improve our understanding of the network architecture of mTBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399631PMC
http://dx.doi.org/10.3389/fncom.2020.00068DOI Listing

Publication Analysis

Top Keywords

default mode
24
mode salience
20
mtbi patients
16
patients mtbi
12
functional connectivity
12
salience networks
8
mild traumatic
8
traumatic brain
8
brain injury
8
mtbi
8

Similar Publications

Background And Purpose: Irritable bowel syndrome (IBS) is a common bowel-brain interaction disorder whose pathogenesis is unclear. Many studies have investigated abnormal changes in brain function in IBS patients. In this study, we analyzed the dynamic changes in brain function in IBS patients using a Hidden Markov Model (HMM).

View Article and Find Full Text PDF

A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Aberrant Structural-Functional Coupling of Large-scale Brain Networks in Older Women with Subthreshold Depression.

J Gerontol B Psychol Sci Soc Sci

January 2025

Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

Objectives: Subthreshold depression (SD) is common in the older population, more so in females than males, and can lead to serious physical and mental ill-health. However, the underlying neurobiology remains unclear. This study used multimodal magnetic resonance imaging (MRI) to investigate the topological organization and coupling of the structural and functional brain networks in older women with SD.

View Article and Find Full Text PDF

Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.

View Article and Find Full Text PDF

Sleep entails significant changes in cerebral hemodynamics and metabolism. Yet, the way these processes evolve throughout wakefulness and sleep and their spatiotemporal dependence remain largely unknown. Here, by integrating a novel functional PET technique with simultaneous EEG-fMRI, we reveal a tightly coupled temporal progression of global hemodynamics and metabolism during the descent into NREM sleep, with large hemodynamic fluctuations emerging as global glucose metabolism declines, both of which track EEG arousal dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!