The neuromuscular junction (NMJ) is the peripheral synapse that controls the coordinated movement of many organisms. The NMJ is also an archetypical model to study synaptic morphology and function. As the NMJ is the primary target of neuromuscular diseases and traumatic injuries, the establishment of suitable models to study the contribution of specific postsynaptic muscle-derived proteins on NMJ maintenance and regeneration is a permanent need. Considering the unique experimental advantages of the (LAL) muscle, here we present a method allowing for efficient electroporation-mediated gene transfer and subsequent detailed studies of the morphology and function of the NMJ and muscle fibers. Also, we have standardized efficient facial nerve injury protocols to analyze LAL muscle NMJ degeneration and regeneration. Our results show that the expression of a control fluorescent protein does not alter either the muscle structural organization, the apposition of the pre- and post-synaptic domains, or the functional neurotransmission parameters of the LAL muscle NMJs; in turn, the overexpression of MuSK, a major regulator of postsynaptic assembly, induces the formation of ectopic acetylcholine receptor clusters. Our NMJ denervation experiments showed complete reinnervation of LAL muscle NMJs four weeks after facial nerve injury. Together, these experimental strategies in the LAL muscle constitute effective methods to combine protein expression with accurate analyses at the levels of structure, function, and regeneration of the NMJ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405910 | PMC |
http://dx.doi.org/10.3389/fncel.2020.00225 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain.
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein.
View Article and Find Full Text PDFBBA Adv
December 2024
Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
Skeletal muscle (SM) is essential for movement, stability, and overall body function, and it readily adapts to changes in energy demand. Myogenesis is energy-intensive and involves complex molecular and cellular events. We recently demonstrated that the absence of lysosomal acid lipase (LAL) significantly impacts the SM phenotype, primarily by disrupting energy homeostasis and reducing ATP production.
View Article and Find Full Text PDFClin Kidney J
January 2025
Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Centre for Healthy Futures, Torrens University Australia, Surry Hills, NSW, 2010, Australia.
Hypertrophic cardiomyopathy (HCM) is a myocardial disorder which commonly presents as an obstructive or end-stage disease. This study aims to investigate the transcriptomic changes related to cardiac cell-specific expression profiles that underpin the molecular transition between the HCM phenotypes. This study utilizes bioinformatics meta-analysis to integrate independent datasets to generate a comprehensive gene expression profile of obstructive HCM and end-stage HCM phenotypes compared to donor hearts.
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
December 2024
Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
Objectives: Frailty is a well-known complication of chronic liver disease and has been recognized as a poor prognostic factor in cirrhotic patients being associated with increased morbidity and mortality. There is limited available pediatric literature in this regard. The current study aimed to estimate the prevalence of frailty and analyze the predictive factors and their association with long-term outcomes in children with liver disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!