TRP Channels Role in Pain Associated With Neurodegenerative Diseases.

Front Neurosci

Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia.

Published: August 2020

Transient receptor potential (TRP) are cation channels expressed in both non-excitable and excitable cells from diverse tissues, including heart, lung, and brain. The TRP channel family includes 28 isoforms activated by physical and chemical stimuli, such as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been shown that TRP channels are also directly or indirectly activated by reactive oxygen species. Oxidative stress plays an essential role in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, and TRP channels are involved in the progression of those diseases by mechanisms involving changes in the crosstalk between Ca regulation, oxidative stress, and production of inflammatory mediators. TRP channels involved in nociception include members of the TRPV, TRPM, TRPA, and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has also been reported that pain is a complex issue in patients with Alzheimer's and Parkinson's diseases, and adequate management of pain in those conditions is still in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved in neurodegeneration. Therefore, some studies have considered TRPV1 as a target for both pain treatment and neurodegenerative disorders. Thus, this review aimed to describe the TRP-dependent mechanism that can mediate pain sensation in neurodegenerative diseases and the therapeutic approach available to palliate pain and neurodegenerative symptoms throughout the regulation of these channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417429PMC
http://dx.doi.org/10.3389/fnins.2020.00782DOI Listing

Publication Analysis

Top Keywords

trp channels
16
neurodegenerative diseases
8
physical chemical
8
noxious stimuli
8
oxidative stress
8
neurodegenerative disorders
8
alzheimer's parkinson's
8
parkinson's diseases
8
channels involved
8
trp
6

Similar Publications

Thermosensory Roles of G Protein-Coupled Receptors and Other Cellular Factors in Animals.

Bioessays

December 2024

Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.

In this review, we introduce the concept of "dual thermosensing mechanisms," highlighting the functional collaboration between G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels that enable sophisticated cellular thermal responsiveness. GPCRs have been implicated in thermosensory processes, with recent findings identifying several candidates across species, including mammals, fruit flies, and nematodes. In many cases, these GPCRs work in conjunction with another class of thermosensors, TRP channels, offering insights into the complex mechanisms underlying thermosensory signaling.

View Article and Find Full Text PDF

3D Aligned Tetrameric Ion Channels with Universal Residue Labels for Comparative Structural Analysis.

Biophys J

December 2024

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, Master University, Hamilton, Canada. Electronic address:

Despite their large functional diversity and poor sequence similarity, tetrameric and pseudo-tetrameric potassium, sodium, calcium and cyclic-nucleotide gated channels, as well as two-pore channels, transient receptor potential channels and ionotropic glutamate receptors share a common folding pattern of the transmembrane (TM) helices in the pore-forming domain. In each subunit or repeat, the pore domain has two TM helices connected by a membrane-reentering P-loop. The P-loop includes a membrane-descending helix, P1, which is structurally the most conserved element of these channels, and residues that contribute to the selectivity-filter region at the constriction of the ion-permeating pathway.

View Article and Find Full Text PDF

Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease.

J Neuroinflammation

December 2024

Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.

Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF).

View Article and Find Full Text PDF

Exploring Potential Diagnostic Biomarkers for Mechanical Asphyxia in the Heart Based on Proteomics Technology.

Int J Mol Sci

November 2024

Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.

Mechanical asphyxia presents a challenging diagnostic issue in forensic medicine due to its often covert nature, and the signs visible during an autopsy are usually not specific. Despite some progress in understanding hypoxia's effects, traditional methods' inherent limitations might overlook new biomarkers in mechanical asphyxia. This study employed 4D-DIA proteomics to explore the protein expression profiles of cardiac samples under conditions of mechanical asphyxia.

View Article and Find Full Text PDF

Transient Receptor Potential (TRP) ion channels like Vanilloid 1 (TRPV1) and Melastatin 3 (TRPM3) are nonselective cation channels expressed in primary sensory neurons and peripheral nerve endings, which are located in cholesterol- and sphingolipid-rich membrane lipid raft regions and have important roles in pain processing. Besides TRP ion channels a wide variety of voltage-gated ion channels were also described in the membrane raft regions of neuronal cells. Here we investigated the effects of lipid raft disruption by methyl-beta-cyclodextrin (MCD) and sphingomyelinase (SMase) on TRPV1, TRPM3 and voltage-gated L-type Ca channel activation in cultured trigeminal neurons and sensory nerve terminals of the trachea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!