Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the feeding ecology of polar cod () during its first year of life is crucial to forecasting its response to the ongoing borealization of Arctic seas. We investigated the relationships between diet composition and feeding success in 1797 polar cod larvae and juveniles 4.5-55.6 mm standard length (SL) collected in five Arctic seas from 1993 to 2009. Prey were identified to species and developmental stages when possible, measured, and their carbon content was estimated using taxon-specific allometric equations. Feeding success was defined as the ratio of ingested carbon to fish weight. Carbon uptake in polar cod larvae < 15 mm was sourced primarily from calanoid copepods eggs and nauplii which were positively selected from the plankton. With increasing length, carbon sources shifted from eggs and nauplii to the copepodites of , and spp. copepodites were the main carbon source in polar cod > 25 mm and the only copepodite positively selected for. spp. copepodites became important replacement prey when left the epipelagic layer at the end of summer. was the preferred prey of polar cod, contributing from 23 to 84% of carbon uptake at any stage in the early development. Feeding success was determined by the number of prey captured in larvae < 15 mm and by the size of prey in juveniles > 30 mm. As Arctic seas warm, the progressive displacement of by the smaller could accelerate the replacement of polar cod, the dominant Arctic forage fish, by boreal species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437650 | PMC |
http://dx.doi.org/10.1007/s00300-020-02643-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!