Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; < 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereopairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereopairs, (2) identify multiple spatially coincident DSMs whose stereopairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and (4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereopair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian forests with slopes < 10°, our results show that HRSI DSMs acquired with sun elevation angles > 35° and < 25° (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors < 0.68 m relative to lidar. The latter, particularly those with angles < 10°, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (μ = 6.0 m, σ = 1.4 m) was consistent with the distribution of plot-level mean tree heights (μ = 6.5 m, σ = 1.2 m). We conclude that the variation in sun elevation angle at time of stereopair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register and difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446955PMC
http://dx.doi.org/10.1016/j.rse.2017.04.024DOI Listing

Publication Analysis

Top Keywords

sun elevation
20
open canopy
20
surface elevations
16
canopy forests
16
elevation angle
12
forest height
12
surface elevation
12
hrsi dsms
12
dsm types
12
surface
9

Similar Publications

Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.

View Article and Find Full Text PDF

Background: Previous research has demonstrated that exposure to individual heavy metals elevates the incidence rate of congenital heart defects (CHDs). However, there is a paucity of data concerning the relationship between combined exposure to multiple heavy metals and the occurrence of CHDs. This study seeks to investigate the association between combined heavy metal exposure in pregnant women and the incidence of CHDs in their offspring in Lanzhou, China.

View Article and Find Full Text PDF

Insulin Resistance Mediates the Association Between Vitamin D and Non-Alcoholic Fatty Liver Disease.

Int J Prev Med

December 2024

Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China.

Background: Vitamin D (VD) deficiency and insulin resistance (IR) increase the risk of non-alcoholic fatty liver disease (NAFLD), but few studies have explored the potential mechanisms by which IR mediates the association between VD and the pathogenesis of NAFLD at the genetic level using publicly available databases.

Methods: This is a cross-sectional study, and we utilized the National Health and Nutrition Examination Survey (NHANES) dataset, as well as data from GSE200765 obtained from the Gene Expression Omnibus (GEO) website. A total of 723 individuals who had completed liver ultrasound examination and the detection of VD levels were included in the final analysis.

View Article and Find Full Text PDF

Tailored biomimetic nanoreactor improves glioma chemodynamic treatment via triple glutathione depletion and prompt acidity elevation.

Mater Today Bio

February 2025

Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.

Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.

View Article and Find Full Text PDF

This study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!