Accurate assessment of childhood adiposity is important both for individuals and populations. We compared fat mass (FM) predictions from a novel prediction model based on height, weight and demographic factors (height-weight equation) with FM from bioelectrical impedance (BIA) and dual-energy X-ray absorptiometry (DXA), using the deuterium dilution method as a reference standard. FM data from all four methods were available for 174 ALSPAC Study participants, seen 2002-2003, aged 11-12-years. FM predictions from the three approaches were compared to the reference standard using; R, calibration (slope and intercept) and root mean square error (RMSE). R values were high from 'height-weight equation' (90%) but lower than from DXA (95%) and BIA (91%). Whilst calibration intercepts from all three approaches were close to the ideal of 0, the calibration slope from the 'height-weight equation' (slope = 1.02) was closer to the ideal of 1 than DXA (slope = 0.88) and BIA (slope = 0.87) assessments. The 'height-weight equation' provided more accurate individual predictions with a smaller RMSE value (2.6 kg) than BIA (3.1 kg) or DXA (3.4 kg). Predictions from the 'height-weight equation' were at least as accurate as DXA and BIA and were based on simpler measurements and open-source equation, emphasising its potential for both individual and population-level FM assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752759PMC
http://dx.doi.org/10.1038/s41366-020-00661-wDOI Listing

Publication Analysis

Top Keywords

'height-weight equation'
16
fat mass
8
bioelectrical impedance
8
reference standard
8
three approaches
8
calibration slope
8
dxa
6
bia
5
quantifying childhood
4
childhood fat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!