The inclusion of pulses in traditional wheat-based food products is increasing as the food industry and consumers are recognizing the nutritional benefits due to the high protein, antioxidant activity, and good source of dietary fiber of pulses. Iron deficiency is a significant global health challenge, affecting approximately 30% of the world's population. Dietary iron deficiency is the foremost cause of anemia, a condition that harms cognitive development and increases maternal and infant mortality. This study intended to demonstrate the potential efficacy of low-phytate biofortified pea varieties on dietary iron (Fe) bioavailability, as well as on intestinal microbiome, energetic status, and brush border membrane (BBM) functionality in vivo (). We hypothesized that the low-phytate biofortified peas would significantly improve Fe bioavailability, BBM functionality, and the prevalence of beneficial bacterial populations. A six-week efficacy feeding ( = 12) was conducted to compare four low-phytate biofortified pea diets with control pea diet (CDC Bronco), as well as a no-pea diet. During the feeding trial, hemoglobin (Hb), body-Hb Fe, feed intake, and body weight were monitored. Upon the completion of the study, hepatic Fe and ferritin, pectoral glycogen, duodenal gene expression, and cecum bacterial population analyses were conducted. The results indicated that certain low-phytate pea varieties provided greater Fe bioavailability and moderately improved Fe status, while they also had significant effects on gut microbiota and duodenal brush border membrane functionality. Our findings provide further evidence that the low-phytate pea varieties appear to improve Fe physiological status and gut microbiota in vivo, and they highlight the likelihood that this strategy can further improve the efficacy and safety of the crop biofortification and mineral bioavailability approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551009 | PMC |
http://dx.doi.org/10.3390/nu12092563 | DOI Listing |
Yakugaku Zasshi
January 2025
Department of Endocrine Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.
The placenta, which acts as an interface between fetal and maternal circulations, is an indispensable organ for fetal growth in mammalian pregnancy. It mediates the transportation of nutrients, the exchange of gases such as oxygen and carbon dioxide, and the excretion of waste products between the fetus and mother. The surface of placental villi is covered by two layers of mononuclear undifferentiated cytotrophoblasts (CT) and multinucleated syncytiotrophoblasts (ST).
View Article and Find Full Text PDFJ Reprod Immunol
December 2024
Department of Histology and Embryology, Medical School, University of Cukurova, Adana, Turkiye.
Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Pharmacy, Dongguk University, Seoul, Republic of Korea.
Understanding the early interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human airway epithelial cells is essential for unraveling viral replication and spread mechanisms. In this study, we investigated the early dynamics of airway epithelial cells during SARS-CoV-2 infection using well-differentiated human nasal and tracheal epithelial cell cultures by incorporating three publicly available single-cell RNA sequencing datasets. We identified a previously uncharacterized cell population, termed virus-rich intermediate (VRI) cells, representing an intermediate differentiation stage between basal and ciliated cells.
View Article and Find Full Text PDFApoptosis
December 2024
Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China.
Background: Chemotherapy-induced mucositis (CIM) significantly impacts quality of life and reduces survival in patients treated with specific chemotherapeutic agents. However, effective clinical treatments for CIM remain limited. Intravenous immunoglobulin (IVIg), a therapeutic derived from pooled human plasma, is widely used to treat inflammatory diseases.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!