The consumption of broccoli provides a large quantity of compounds with nutraceutical properties to the human diet. Broccoli has a high content of glucosinolates, compounds of the specialized metabolism with anticarcinogenic activity. In a previous work, we found that harvesting different time-points during the day affects the rate of senescence of broccoli heads during postharvest storage. In this work, we tested the same cultural practice to evaluate glucosinolate content and expression of genes involved in glucosinolate metabolism. Broccoli heads were harvested at 8:00, 13:00 and 18:00 h and stored for 5 d at 20 °C in darkness. We found that content and composition of the glucosinolate pool was affected by the time of harvest. Levels of indolic glucosinolates decreased with the time of harvest on the day whereas indolic glucosinolate showed only a moderate decrease. The expression of genes associated to the biosynthesis of aliphatic glucosinolates was variable during the day. In relation to indolic glucosinolates, an increase in the expression of the transcription factor BolMYB51 was detected around 13:00 h, which strongly correlated with the increase in expression of genes associated to their biosynthesis towards the end of the day. During postharvest, the storage in darkness affected differently the metabolisms of indolic and aliphatic glucosinolates. The content of aliphatics decreased during the postharvest period, as well as the expression of the genes associated with their biosynthesis. In contrast, in the case of indolics, their content remained constant or varied slightly, while the expression of the associated biosynthetic genes decreased only slightly. Finally, the genes related to the degradation of glucosinolates appeared to be strongly regulated by light conditions, since their expression increased during the course of the day and decreased markedly during postharvest storage in darkness. These results suggest that harvesting of broccolis close to noon would be convenient to maintain higher levels of glucosinolates during postharvest storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2020.109529 | DOI Listing |
Int J Food Sci
January 2025
Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland.
Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions.
View Article and Find Full Text PDFFungal Biol
February 2025
Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus, Denmark. Electronic address:
Although a major share of postharvest losses of apples is due to fungal fruit rots, their timely detection is difficult in commercial bulk-storage rooms. Therefore, a method was developed to identify the volatile markers of fruit naturally infected by Phacidiopycnis washingtonensis, a common storage-rot fungus of Northern Europe, and North and South America. Potato dextrose agar, apple juice agar, and fruit of the apple cultivar 'Nicoter' were inoculated with P.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
P.G. Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India.
Jamun (Syzygium cumini L. Skeels), a less recognized, underutilized, and highly perishable fruit is a delicacy of tropical regions. Soft pulp and thin exocarp make these small purple berries susceptible to mechanical injury and several postharvest diseases.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.
View Article and Find Full Text PDFSci Prog
January 2025
Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Objective: This study investigated the fungal contamination profile of cocoa beans from cocoa-growing regions in Ghana, with particular emphasis on the potential impact of ochratoxigenic species.
Methods: A total of 104 fermented and dried cocoa beans were randomly collected from farmers for analysis. Fungal isolation was conducted using potato dextrose agar and malt extract agar media.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!