The role of biochemical and mechanical disintegration on β-carotene release from steamed sweet potatoes (SSP) and fried sweet potatoes (FSP) during in vitro gastric digestion was investigated. Results revealed that, in the absence of mechanical forces generated by the stomach, biochemical digestion did not have a great effect on the breakdown of cell walls within the sweet potato food matrix and the release of ß-carotene was similar in both SSP and FSP. Cell wall in the plant-food may act as a physical 'barrier' towards the action of gastric juice and to the release of nutrients into the gastric digesta. However, FSP underwent quicker softening and collapse during in vitro gastric digestion compared to the compact and denser structure of SSP. This may explain the faster cell wall breakdown and subsequent β-carotene release from FSP cellular matrix than SSP when mechanical forces are applied as in the human gastric simulator (HGS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109481DOI Listing

Publication Analysis

Top Keywords

β-carotene release
12
sweet potatoes
12
vitro gastric
12
gastric digestion
12
role biochemical
8
biochemical mechanical
8
mechanical disintegration
8
disintegration β-carotene
8
release steamed
8
fried sweet
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

This study analyzes the influences of surface reactions on the natural convective flow, temperature, and oxygen concentration distributions in vertically placed multilayered cavities. A mathematical model for this problem is formulated with proper boundary conditions. At first, the governing equations are made dimensionless using the variable transformations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!