Comparison of microbial communities and amino acid metabolites in different traditional fermentation starters used during the fermentation of Hong Qu glutinous rice wine.

Food Res Int

Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China.

Published: October 2020

AI Article Synopsis

  • Hong Qu glutinous rice wine (HQGRW) is made from glutinous rice and traditional fermentation starter, but it has high bitterness and umami flavors that many consumers dislike.
  • This study compared the microbial communities and amino acid content in HQGRW made with three types of Hong Qu starters: black Wuyi, red Wuyi, and Gutian, using advanced sequencing technologies and chromatography.
  • Results indicated differences in microbial dynamics among the starters, with certain microbes linked to increased bitter and umami amino acids, providing insights into fermentation processes and how to potentially improve wine flavors.

Article Abstract

Hong Qu glutinous rice wine (HQGRW) is produced from glutinous rice with the addition of the traditional fermentation starter Hong Qu (mainly Gutian Hong Qu and Wuyi Hong Qu) has been added. It is unpalatable and rejected by consumers because the bitter and umami tastes are too high. The objective of this study was to compare the dynamics of the microbial communities and amino acids especially those in the different traditional fermentation starters used during HQGRW fermentation, and elucidate the key microbes responsible for amino acids. Three widely-used types of Hong Qu starters were used which can make different bitterness and umami in our previous studies, namely, black Wuyi Hong Qu (WB), red Wuyi Hong Qu (WR), and Gutian Hong Qu (GT). The living dynamics of fungal and bacterial communities during the fermentation were determined by high-throughput sequencing and rRNA gene sequencing technology for the first time. The content of amino acids in the HQGRW were determined by reverse-phase high-performance liquid chromatography analysis. The results showed that there were differences between fungal communities during the fermentation process in Wuyi Hong Qu and Gutian Hong Qu starters and between bacterial communities during the fermentation process in the three types of starters. The amino acid content of the samples showed an increasing trend in each group. The total amino acids, as well as the bitter, sweet, umami, astringent amino acids, in the GT Hong Qu group increased more slowly during fermentation, as comparerd to those in WB and WR groups. Furthermore, Meyerozyma, Saccharomyces, Bacillus, Rhizopus, Pediococcus, Monascus, and Halomonas were strongly positively correlated with the content of bitter and umami amino acids (|r| > 0.6 with FDR adjusted P < 0.05) by Spearman's correlation analysis. To conclude, these findings may contribute to a better understanding of the bitter and umami amino acid production mechanism during traditional fermentation and helpful in improving the taste of HQGRW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109329DOI Listing

Publication Analysis

Top Keywords

amino acids
24
wuyi hong
16
traditional fermentation
12
hong
12
glutinous rice
12
hong gutian
12
gutian hong
12
communities fermentation
12
fermentation
9
microbial communities
8

Similar Publications

Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear.

View Article and Find Full Text PDF

The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.

View Article and Find Full Text PDF

African swine fever (ASF) has widely spread around the world in the last 100 years since its discovery. The African swine fever virus (ASFV) particles are made of more than 150 proteins, with the p17 protein encoded by the D117L gene serving as one of the major capsid proteins and playing a crucial role in the virus's morphogenesis and immune evasion. Thus, monoclonal antibody (mAb) targeting p17 is important for the research and detection of ASFV infection.

View Article and Find Full Text PDF

Poultry represents a rich source of multiple nutrients. Refrigeration is commonly employed for poultry preservation, although extended storage duration can adversely affect the meat quality. Current research on this topic has focused on the analysis of biochemical indices in chilled goose meat, with limited information on changes in metabolites that influence the quality of the meat during storage.

View Article and Find Full Text PDF

Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!